
Brani Vidakovic

Statistics for Bioengineering

Sciences: Results, Hints, and

Solutions to the Exercises

Springer





Preface

This Manual provides solutions and hints to some of the exercises and con-

stitutes a “living” document. Over time more hints and solutions will be added

– these additions are always welcome by the students.

If you find an error or have a suggestion for improvement please do not

hesitate to send an email.

BRANI VIDAKOVIC

brani@bme.gatech.edu
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Chapter 2

Sample and Its Properties

2.1 Auditory Cortex Spikes.

See file spikes.m.

2.2 On Average.

The averages are: mean=85.5K, geometric mean=41.2K, median = 30K,

harmonic mean=29.3K, and mode=20K. The advertising strategy in which

the average salary of 85.5K is quoted will be misleading since a newly hired

worker is likely to have a salary less than or equal to the median, most likely

the mode.

2.3 Contraharmonic mean and f -mean.

(a)2 X1+X2
2 − 2

1/X1+1/X2
= X1 + X2 − 2X1 X2

X1+X2
= X2

1+X2
2

X1+X2
.

(b) C(x,x,x, . . . ,x)= nx2

nx
= x.

(c) For functions f (x)= x, f (x) = 1/x, f (x) = xk, and f (x) = log(x), the inverse

functions are f −1(x)= x, f −1(x)= 1/x, f −1(x)= x1/k, and f (x)= exp(x). Substitu-

tion and algebra verify (c). For example, if f (x)= log(x),

X f = exp

{

1

n

n
∑

i=1

log X i

}

= exp

{

log

(

n
∏

i=1

X1/n
i

)}

=
n

∏

i=1

X1/n
i .

2.4 Mushrooms.

The following MATLAB file provides the solution:

amanita = [9.2, 8.8, 9.1, 10.1,...

8.5, 8.4, 9.3, 8.7,...

9.7, 9.9, 8.4, 8.6,...

8.0, 9.5, 8.8, 8.1,...

8.3, 9.0, 8.2, 8.6,...

1
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9.0, 8.7, 9.1, 9.2,...

7.9, 8.6, 9.0, 9.1,...

9.2, 8.8, 9.1, 10.1];

%(a)

fivens = [min(amanita) prctile(amanita,25) ...

median(amanita) prctile(amanita,75) max(amanita)]

% fivens =

% 7.9000 8.5500 8.9000 9.2000 10.1000

%(b)

[mean(amanita) mode(amanita)]

% 8.9063 9.1000

%(c)

zis = zscore(amanita);

hist(zis,15)

2.5 Manipulations with sums.

TBA

2.6 Emergency Calculation.

Since n = 12 and X̄ = 15,
∑12

i=1 X i = 180. After the correction, the sum is

192. Thus, (X̄ )new = 192/12 = 16.

From s2 = 1
n−1

(
∑n

i=1 X2
i
−n(X̄ )2

)

it follows that

n
∑

i=1

X2
i = (n−1)s2 +n(X̄ )2.

This gives
∑12

i=1 X2
i
= 11 · 34+ 12 · 152 = 3074. After adjusting for the error,

(
∑12

i=1 X2
i
)new = 3074− 42 + 162 = 3314, and (s2)new = 1

11

(

3314−12 ·162
)

= 22.

Thus, the corrected values are (X̄ )new = 16 and (s2)new = 22.

2.7 Sample Mean and Standard Deviation After a Change.

The following MATLAB file provides the solution

%sumy -> sum(y_i):old

%sumynew -> sum(y_i): new

%sumy2 -> sum(y_i^2): old

%sumy2new -> sum(y_i^2): new

%NEED: ybarnew and synew

sumy = 15 * 11.6;

sumynew = sumy - 7 + 10;

ybarnew = sumynew/14;

%recall sy = sqrt(1/14 (sumy2 - 15*11.6^2) )

sumy2 = 14*(4.4045)^2 + 15 * 11.6^2;

% now n=15 drops to n=14...
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sumynew2 = sumy2 - 49 + 300; %300=20^2 - 10^2

synew = sqrt( 1/13 * (sumynew2 - 14 * ybarnew^2 ) )

disp(’ New ybar New sy ’)

disp( [ybarnew synew] )

% New ybar New sy

% 12.6429 4.8295

2.8 Surveys on Different Scales.

%Surveys on Different Scales

surUK =[6, 7, 5, 10, 3, 9, 9, 6, 8, 2, 7, 5];

surUS =[67, 65, 95, 86, 44, 100, 85, 92, 91, 65];

CVUK = std(surUK)/mean(surUK);

CVUS = std(surUS)/mean(surUS);

disp(’ CVUK CVUS’)

disp([CVUK CVUS])

% CVUK CVUS

% 0.3786 0.2255

The UK survey is substantially more variable than the US survey.

2.9 Merging Two samples.

Let Zi be the values of the merged sample,

(Z1,Z2, . . . ,Zm,Zm+1, . . . ,Zm+n)= (X1, . . . , Xm,Y1, . . . ,Yn).

Then,

Z̄ =
1

m+n

m+n
∑

i=1

Zi =
1

m+n

(

m
∑

i=1

X i +
n
∑

i=1

Yi

)

=
1

m+n
(mX̄ +nȲ ).

s2
Z =

1

m+n−1

m+n
∑

i=1

(Zi − Z̄)2

=
1

m+n−1

(

m
∑

i=1

(X i − X̄ + X̄ − Z̄)2 +
n
∑

i=1

(yi − Ȳ + Ȳ − Z̄)2

)

.

Since

m
∑

i=1

(X i − X̄ )(X̄ − Z̄)= (X̄ − Z̄)
m
∑

i=1

(X i − X̄ )= 0 and
n
∑

i=1

(Yi − Ȳ )(Ȳ − Z̄)= 0,

then

(m+n−1)s2
Z = (m−1)s2

X +m(X̄ − Z̄)2+ (n−1)s2
Y +n(Ȳ − Z̄)2.
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The relation for s2
Z

follows, since

m(X̄ − Z̄)2 +n(Ȳ − Z̄)2 = m
n2(X̄ − Ȳ )2

(m+n)2
+n

m2(X̄ − Ȳ )2

(m+n)2
=

mn

m+n
(X̄ − Ȳ )2.

2.10 Fitting the Histogram.

load(’fat.dat’)

broz = fat(:,2);

histfit(broz)

h = get(gca,’Children’);

set(h(2),’FaceColor’,[.5 .9 1])

−10 0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

Fig. 2.1 Histogram of Brozek index broz overlaid by best fitting Gaussian curve.

2.11 QT Syndrome.

Hint: QT is considered prolonged if it exceeds 440 ms.

2.12 Blowfly Count Time Series.

TBA

2.13 Simpson’s Diversity Index.

Pure function Eh in Example 2.3 should be replaced by

Ed = @(f) (sum(f))2/(sum(f.2)* length(f)).
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The result is Ed(br) = 0.4565, Ed(in) = 0.4602, Ed(no) = 0.4078, and

Ed(us) = 0.4429, and the sample from India is the most homogeneous ac-

cording to Simpson’s homogeneity index.

2.14 Speed of Light.

%Clean the outliers if any%

irange = iqr(light);

q1 = prctile(light, 25);

q3 = prctile(light, 75);

out1 = find(light < q1 - 2.5*irange)

%indices for outliers smaller than q1-2.5*iqr

out3 = find(light > q3 + 2.5*irange)

%indices for outliers larger than q3+2.5*iqr

lightc = light(setdiff((1:length(light)), union(out1,out3)))

%take indices (1:length(light)) minus (out1 union out3),

% so the outlier indices are excluded

%mean, 20% trimmed mean, Real MAD, std, variance

meli = mean(lightc)

tm20 = trimmean(lightc,20)

realmad = 1/0.6745 * mad(lightc,1)

std(lightc)

var(lightc)

figure(1)

% histogram with 30 bins

hist(lightc, 30)

figure(2)

histn(lightc,15,3,42);

hold on

[f,x,u] = ksdensity(lightc);

plot(x,f,’r-’,’linewidth’, lw)

title(’Density estimate for the cleaned light data’)

2.15 Limestone Formations in Jamaica.

After loading data limestone.dat the command

glyphplot(limestone,’glyph’,’face’,’grid’,[3, 6]) produces figure 2.3.

2.16 Duchenne Muscular Dystrophy.

TBA

2.17 Ashton’s Dental Data.

TBA

2.18 Andrews Plots of Iris Data. TBA

2.19 Cork Boring Data.
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Density estimate for "cleaned" light data

(a) (b)

Fig. 2.2 (a) hist(lightc, 30); (b) histn(lightc,15,3,42); hold on; [f,x,u] =

ksdensity(lightc); plot(x,f,’r-’,’linewidth’, 3)

 1  2  3  4  5  6

 7  8  9 10 11 12

13 14 15 16 17 18

Fig. 2.3 Chernoff faces from limestone data.

See corkrao.m.

2.20 Balance.

See balances.m.

2.21 Cats.

TBA

2.22 BUPA Liver Data.

TBA

2.23 Cell Circularity Data.

TBA
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2.1 Additional Problems

2.a1 Aspirin Weights. Stoodley (1984) provides 100 weights of aspirin

tablets determined using laboratory balance and rounded to the nearest mg.

The data in aspirin.dat are given as a simple sample.

(a) Simplify this sample using frequencies of the measurements.

(b) Find location and spread measures of the sample.

(c) Plot the histogram of the z-scores.

[Stoodley, K. (1984). Applied and Computational Statistics, A First Course.

Ellis Horwood LTD, Chichester, England, 229pp.]





Chapter 3

Probability, Conditional Probability, and

Bayes Formula

3.1 Event Differences.

TBA

3.2. Inclusion-Exclusion principle in MATLAB.

Hint. For example, MATLAB commands

numbers = 1:N; A = sum(mod(numbers, 3) == 0);

will count how many numbers in {1, . . . ,N} are divisible by 3. Find appropri-

ate counts and apply the inclusion-exclusion principle to find the number of

favorable outcomes.

3.3 A Complex Circuit.

TBA

3.4 De Mere Paradoxes.

TBA

3.5 Probabilities of Some Composite Events.

TBA

3.6 Deighton’s Novel.

(ii)Ans. 63.6%

3.7 Reliable System from Unreliable Components.

(a) The components should be connected in parallel fashion since this in-

creases the reliability.

(b) If single element works or fails with probabilities p or q, and if the

system S has n parallel components, then the probability of S failing is sS =

9
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qn. At least nine components are needed, since qS = 0.29 = 5.12×10−7 < 10−6.

Eight components will not be sufficient since 0.28 = 2.56×10−6 > 10−6.

3.8 k-out-of-n Systems.
A 2-out-of-4 system fails if no or only one component work. If pi are

probabilities of work and qi are complementary probabilities, then probability
of system not working is

p1=0.1; p2=0.8; p3=0.5; p4=0.4;

q1=0.9; q2=0.2; q3=0.5; q4=0.6;

q=q1*q2*q3*q4 + p1*q2*q3*q4+...

q1*p2*q3*q4 + q1*q2*p3*q4 + q1*q2*q3*p4;

%0.3660

Thus, the system works with the probability of 0.3660.

3.9 Number of Dominos.

Solution for (a) is 10 by counting {(0,0),(0,1),(0,2), (0,3),(1,1), (1,2),

(1,3),(2,2), (2,3),(3,3)} or by using combinations with repetition
(4+2−1

2

)

= 10.

3.10 Counting Protocols. TBA

3.11 Correlation Between Events.

The denominators are identical. P(Ac ∩Bc)−P(Ac)P(Bc) = 1−P(A∪B)−

(1−P(A))(1−P(B))=P(A∩B)−P(A)P(B).

3.12 A Fair Gamble with a Possibly Loaded Coin.

(a) Yes, one can simulate perfectly fair game with a biased coin. Flip the

coin twice, ignore TT, HH outcomes and declare “heads” if you see HT and

“tails” if you see TH. The probabilities of these two outcomes are identical,

p(1− p) each.

If one conditions on the event that the outcomes on the two coins are differ-

ent, these equal probabilities become 1/2 each. For any coin, possibly biased,

with P(H)= p 6= 1/2, P(HT|HTorTH)= P(TH|HTorTH)= p(1−p)
2p(1−p) = 1/2.

Therefore a biased coin can emulate a fair coin, but at least two flips are

needed to produce a “fair flip.”

(b) To emulate fair die flip the coin 4 times and consider only the cases when

you observe 2 H and 2 T. If different number of H and T are obtained, ignore

that case and flip the coin again.

There are 6 possibilities: HHTT, HTHT, HTTH, THHT, THTH, and TTHH.

Each has the probability p2(1− p)2, but conditioned on the event “two heads

and two tails,” each outcome has the probability

p2q2

(4
2

)

p2q2
= 1/6.
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Now assign � to HHTT, � to HTHT, . . . , 
 to TTHH.

3.13 Neural Signal.

Denote by A the event that neuron fires, and with B that it fires in the

time interval [0, t], t< T. Then P(A|Bc)= P(Bc |A)P(A)
P(Bc ) =

T−t
T

p

T−t
T

p+1(1−p)
= (1−t/T)p

1−t/T p
.

3.14 Guessing.

Let SR and SG be the events that the subject guesses Red and Green,

and let LR and LG be the events that the light flashes red and green, respec-

tively. The subject’s guess and the light color are independent and P(SR|LR)=
P(SR|LG) = P(SR) = 0.7 and P(SG|LR) = P(SG|LG) = P(SG) = 0.3. Also,

P(LR)= 0.7 and P(LG)= 0.3.

(i) Let C be the event that the subject guesses correctly. By the rule of total

probability,

P(C) = P(C|LR)P(LR)+P(C|LG)P(LG)

= P(SR|LR)P(LR)+P(SG|LG)P(LG)

= P(SR)P(LR)+P(SG)P(LG)= 0.32 +0.72 = 0.58.

(ii)

P(LR|C)=
P(C|LR)P(LR)

P(C)
=

P(SR)P(LR)

P(C)
=

0.32

0.32 +0.72
= 0.04655.

3.15 Propagation of Genes. TBA

3.16 Easy Conditioning.

TBA

3.17 Eye Color.

Since Megan has blue eyes and both parents are brown-eyed, then the par-

ents are both Bb. Without any information on Megan sister’s phenotype, the

distribution of her allele pairs would be

BB Bb bb

probs 1/4 1/2 1/4

However, since we know that Megan’s sister has brown eyes, then the con-

ditional probabilities are calculated as

P({BB}|{BB, Bb})=
P({BB}∩ {BB, Bb})

P({BB, Bb})
=

P({BB})

P({BB, Bb})
=

1/4

3/4
= 1/3.
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Similarly, P({Bb}|{BB, Bb}) = 2/3 and P({bb}|{BB, Bb})= 0.

Thus, after information about Megan sister’s phenotype her genotype dis-

tribution is

BB Bb bb

probs 1/3 2/3 0

Megan sister’s husband allays passes b allele, and the child will be blue-

eyed only if Megan’s sister passes allele b. This happens with probability

P({Megan’s sister is Bb})×P({b is passed from Bb )= 2/3×1/2 = 1/3

3.18 Dice.

Denote with A the event that in 10 rolls there is at least one 
 and with

B that there are at least two 
. Then,

P(B|A)= 1−P(Bc|A)= 1−P(ABc)/P(A)= 1−
10×1/6× (5/6)9

1− (5/6)10
= 0.6148.

3.19 Inflation and Unemployment.

U

Hi Low Marg

I
Hi 0.16 0.24 0.4

Low 0.36 0.24 0.6

Marg 0.52 0.48 1

(a) P(IH) = P((IH ∩UH)∪ (IH ∩UL)) = P(IH ∩UH)+P(IH ∩UL) = 0.16+
0.24 = 0.40.

(b) P(IH|UH) = P(IH∩UH)
P(UH) = 0.16/0.52 = 0.30769.

(c) Dependent. For example 0.16 = P(IH ∩UH) 6= P(IH)×P(UH) = 0.4 ×
0.52 = 0.208.

3.20 Multiple Choice.

Let H1 be the hypothesis that the student knows the question and H2 =

Hc
1. It is given that P(H1)= 0.8 and P(H2)= 0.2. Denote by A the event that the

student answers the question correctly. Then, P(A|H1)= 1 and P(A|H2)= 0.25.

Using the rule of total probability, the required probability in (i) is

P(A)=P(A|H1)P(H1)+P(A|H2)P(H2)= 1 ·0.8+0.2 ·0.25 = 0.85.

In (ii) we are interested in P(H1|A) and this can be found using Bayes’ rule.

P(H1|A) =
P(A|H1)P(H1)

P(A)
=

0.8

0.85
= 0.9412.
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3.21 Manufacturing Bayes.

Let A be the event that the randomly selected item is conforming and

let H1,H2, and H3 be the events (hypotheses) that the item is produced on

the machine-type 1, 2, or 3. >From the description of the problem, P(A|H1) =
0.94, P(A|H2) = 0.95, and P(A|H3) = 0.97. From the distribution of total pro-

duction among the machine types, it follows that P(H1)= 0.3, P(H2)= 0.5, and

P(H3)= 0.2. Note that P(H1)+P(H2)+P(H3)= 1.

The probability in (i) is found by the Rule of Total Probability:

P(A) = P(A|H1)P(H1)+P(A|H2)P(H2)+P(A|H3)P(H3)

= 0.94×0.3+0.95×0.5+0.97×0.2 = 0.9510.

The probability in (ii) in terms of A and H1 is P(H1|A). Its calculation requires

Bayes’ rule,

P(H1|A)=
P(A|H1)P(H1)

P(A)
=

0.94×0.3

0.9510
= 0.2965.

Note that, if the item turned to be conforming, the posterior probability that it

was produced on type 1 machine is slightly less than the corresponding prior

probability.

3.22 Stanley.

Denote with A the event that Stanley draws a favorable card (and conse-

quently passes the exam with an A).

(i) If he draws the card first, then clearly P(A)= 8/20= 2/5.

(ii) If Stanley is second in line, then one card was taken by the student

before him. That first card taken might have been favorable (hypothesis H1) or

unfavorable (hypothesis H2). Obviously, the hypotheses H1 and H2 partition

the sample space since no other type of cards is possible in this context. Also,

the probabilities of H1 and H2 are 8/20 and 12/20, respectively. Now, after

this first card has been taken, Stanley draws the second. If H1 had happened,

the probability of A is 7/19, and if H2 had happened, the probability of A is

8/19. Thus, P(A|H1)= 7/19 and P(A|H2)= 8/19. By the rule of total probability,

P(A)= 7/19 ·8/20+8/19 ·12/20 = 8/20= 2/5.

(iii) Stanley has the same probability of getting an A after two cards have

already been taken. The hypotheses are H1={ both cards taken favorable },

H2={ exactly one card favorable }, and H3={ none of the cards taken favorable

}. P(H1)= 8/20 ·7/19,P(H3)= 12/20 ·11/19. and P(H2)= 1−P(H1)−P(H3). Next,

P(A|H1) = 6/18,P(A|H2) = 7/18, and P(A|H3) = 8/18. Therefore, P(A) = 6/18 ·
7/19 ·8/20+7/18 · (12 ·16)/(19 ·20)+8/18 ·11/19 ·12/20 = 8/20 = 2/5.

3.23 Kokomo, Indiana.

By Bayes’ rule,



14 3 Probability, Conditional Probability, and Bayes Formula

P(liberal|did not vote) =
(1−0.65)×0.20

(1−0.82)×0.65+ (1−0.65)×0.20+ (1−0.50)×0.15

= 0.07/0.262 = 0.26718.

3.24 Mysterious Transfer.

The solution requires using the rule of total probability, where the event of

interest is A-a ball drawn from the second box is black, and the hypotheses are

H1-transferred ball is white and H2-transferred ball is black. By accounting

for the content of the first box, we find P(H1)= 4/7 and P(H2)= 3/7. The proba-

bility P(A|H1)= 5/9 since after the transfer there are 4 white and 5 black balls

in the second box. Similarly, P(A|H2) = 6/9. (i) The probability of selecting a

black ball from the second box is

P(A)=P(A|H1)P(H1)+P(A|H2)P(H2)= 5/9×4/7+6/9×3/7 = 38/63.

(ii) By Bayes’ rule,

P(H2|A) =
P(A|H2)P(H2)

P(A)
=

18/63

38/63
= 9/19.

3.25 Two Masked Robbers.

Let R be the event that Mr. Smith is a robber and Rc its complement,

that is, Mr Smith is innocent. Let T be the event that the lie detector says

Mr. Smith is a robber, and T c its complement. It is given that P(T|R) = 0.85

and P(T|Rc) = 0.08. We are interested in P(R|T). The events R and Rc are

hypotheses and P(R|T) can be found using Bayes’ rule. First, by the rule of

total probability in which, for a randomly selected person among 40 people,

the detector indicates the person is a robber is

P(T)=P(T|R)P(R)+P(T|Rc)P(Rc)= 0.85×2/40+0.08×38/40 = 0.1185.

By Bayes’ rule,

P(R|T)=
P(T|R)P(R)

P(T)
= (0.85×2/40)/0.1185 = 0.38865.

The probability that Mr. Smith is a robber if the lie-detector said he was, is

less than 39%.

3.26 Information Channel.

Hint: P(ABCA)=P(ABCA|AAAA)×0.3+P(ABCA|BBBB)×0.5+P(ABCA|CCCC)×

0.2. For example P(ABCA|BBBB)= 0.2×0.6×0.2×0.2. Apply Bayes’ rule.

Sol.
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P(ABCA) = P(ABCA|AAAA)×0.3+P(ABCA|BBBB)×0.5+P(ABCA|CCCC)×0.2

= 0.62 ·0.22 ·0.3+0.6 ·0.23 ·0.5+0.6 ·0.23 ·0.2 = 0.00768.

By Bayes’ rule, P(AAAA|ABCA) = 0.62 ·0.22 ·0.3/0.00768 = 0.5625.

As an easy side result one can find P(BBBB|ABCA)= 0.3125 and P(CCCC|ABCA)=
0.125 and check that 0.5625+0.3125+0.125 = 1.

3.27 Quality Control.

TBA

3.28 Let’s Make a Deal.

TBA

3.29 Ternary channel.

% prsissj means probability of received si if sent sj (given)

% prsi means probability of received si (question in (a))

% pssi means probability sent si (given 1/3 each)

% pssirsj means probability sent si if received sj (question in (b))

%

prs1ss1 = 0.75; prs2ss1 = 0.1; prs3ss1 = 0.15;

prs1ss2 = 0.098; prs2ss2 = 0.9; prs3ss2 = 0.002;

prs1ss3 = 0.02; prs2ss3 = 0.08; prs3ss3 = 0.9;

pss1 = 1/3; pss2 = 1/3; pss3 = 1/3;

%(a) total probabaility formula

prs1 = prs1ss1 * pss1 + prs1ss2 * pss2 + prs1ss3 * pss3 %0.2893

prs2 = prs2ss1 * pss1 + prs2ss2 * pss2 + prs2ss3 * pss3 %0.3600

prs3 = prs3ss1 * pss1 + prs3ss2 * pss2 + prs3ss3 * pss3 %0.3507

%(b) Bayes’ formula

pss1rs1 = prs1ss1 * pss1/prs1 %0.8641

pss2rs1 = prs1ss2 * pss2/prs1 %0.1129

pss3rs1 = prs1ss3 * pss3/prs1 %0.0230

pss1rs2 = prs2ss1 * pss1/prs2 %0.0926

pss2rs2 = prs2ss2 * pss2/prs2 %0.8333

pss3rs2 = prs2ss3 * pss3/prs2 %0.0741

pss1rs3 = prs3ss1 * pss1/prs3 %0.1426

pss2rs3 = prs3ss2 * pss2/prs3 %0.0019

pss3rs3 = prs3ss3 * pss3/prs3 %0.8555

%0.8641 0.1129 0.0230

%0.0926 0.8333 0.0741

%0.1426 0.0019 0.8555
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3.30 Sprinkler Bayes Net.

model

cloudy ~ dcat(p.cloudy[]);

sprinkler ~ dcat(p.sprinkler[cloudy,]);

rain ~ dcat(p.rain[cloudy,]);

wetgrass ~ dcat(p.wetgrass[sprinkler,rain,])

list(

#hard evidence , uncomment and instantiate...

# sprinkler = 1,

# cloudy = 1,

rain = 1,

wetgrass = 2,

#initial distributions

p.cloudy = c(0.5,0.5),

# conditionals

p.sprinkler = structure(.Data = c(0.50, 0.50,

0.90, 0.10), .Dim = c(2,2)),

p.rain = structure(.Data = c(0.80, 0.20,

0.20, 0.80), .Dim = c(2,2)),

p.wetgrass = structure(.Data = c(1., 0.0,

0.1, 0.9,

0.1, 0.9,

0.01, 0.99), .Dim = c(2,2,2))

) #end list

3.31 Diabetes in Pima Indians Bayes Net.

model

pregnancies ~ dcat(p.pregnancies[]); #Multiple pregnancies?

age ~ dcat(p.age[]); #Older than 50%?

overweight ~ dcat(p.overweight[]); #Heavier than 50%?

diabetes ~ dcat(p.diabetes[pregnancies,age,overweight,]);

#Diagnosed with diabetes?

glycose ~ dcat(p.glycose[diabetes,]); #Elevated glycose?

insulin ~ dcat(p.insulin[diabetes,]) #Elevated insulin?

bloodpressure ~ dcat(p.bloodpressure[overweight,diabetes,]);

#High blood pressure

DATA
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list(#put hard evidence as 1 or 2, un-comment as needed

#pregnancies=2,

#age = 1,

#overweight=1,

diabetes=2,

#glycose = 1,

#insulin =2,

#bloodpressure=1,

#next are distributions of initial nodes:

p.pregnancies= c(0.45,0.55),

p.age = c(0.5, 0.5),

p.overweight = c(0.5, 0.5),

#the rest are conditional probability distributions:

p.diabetes = structure(.Data =

c(0.95,0.05, 0.67, 0.33,

0.59,0.41, 0.40, 0.60,

0.73,0.27, 0.66, 0.34,

0.63,0.37, 0.41, 0.60 ), .Dim = c(2,2,2,2)),

p.glycose = structure(.Data = c(0.64,0.36,0.21,0.79),

.Dim = c(2,2)),

p.insulin = structure(.Data = c(0.49,0.51,0.52,0.48),

.Dim = c(2,2)),

p.bloodpressure = structure(.Data = c(0.55,0.45,

0.58,0.42,

0.40,0.60,

0.49,0.51), .Dim = c(2,2,2))

Just Generate Initials by "gen inits"

3.32 A Simplified Probabilistic Model for Visual Pathway.

TBA

3.1 Additional Problems

3.a1 Twins. Dizygotic (fraternal) twins have the same probability of each

gender as in overall births, which is approximately 51% male, 49% female.

Monozygotic (identical) twins must be of the same gender. Among all twin

pregnancies, about 1/3 are monozygotic.

Find the probability of two girls in

(a) monozygotic pregnancy,

(b) dizygotic pregnancy, and

(c) dizygotic pregnancy given that we know that the gender of the babies is

the same.

If Mary is expecting twins, but no information about the type of pregnancy is

available, what is the probability that the babies are
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(d) two girls;

(e) of the same gender;

(f) Find the probability that Mary’s pregnancy is dizygotic if it is only known

that the babies are two girls.

Retain four decimal places in your calculations.

Hint: (a) given; (b) genders are independent; (c) conditional probability:

P(A|B) = P(A ∩ B)/P(B). Since A is subset of B, A ∩ B = A and P(A|B) =
P(A)/P(B); (d) total probability formula/rule. What are the hypotheses? (e)

similar to (d); (f) Bayes’ rule.

(a) P(GG|MZ) = 0.49. This is because a single egg is fertilized to form one

zygote, which subsequently divides into two separate embryos.

(b) Because of independence, this probability is P(GG|DZ) = 0.49×0.49 =
0.2401.

(c) The same gender S = BB∪GG in dizygotic pregnancy happens with prob-

ability of P(S|DZ) = 0.492+0.512 = 0.5002. Then the probability is P(GG|DZ∩
S)= P(GG∩S|DZ)/P(S|DZ) = P(GG|DZ)/P(S|DZ) = 0.2401/0.5002= 0.4800.

(d) P(GG) = P(GG|MZ)P(MZ)+P(GG|DZ)P(DZ) = 0.49 ·1/3+0.2401 ·2/3 =
0.3234.

(e) S = BB∪GG; P(S)= P(S|MZ)P(MZ)+P(S|DZ)P(DZ) = 1 ·1/3+0.5002 ·
2/3 = 0.6668.

(f) P(DZ|GG) = P(GG|DZ)P(DZ)/P(GG) = 0.2401·2/3
0.3234 = 0.4949.

3.a2 Greta. There is a 10% chance that pure breed German shepherd Greta

is a carrier of canine hemophilia A. If she is a carrier, there is a 50-50 chance

that she will pass the hemophiliac gene to a puppy.

Greta has two male puppies and they are tested free of hemophilia. What

is the probability that Greta is a carrier, given this information about her

puppies?

Hint: Passing the hemophiliac gene is independent between the puppies. If

the puppies are male than the only way they will get the hemophilia is from

the mother carrier since hemophilia is X-chromosome-bound disorder.

Let H1 denote the event that Greta is a carrier, then P(H1) = 0.1. Let A

be the event that the two male puppies are disease free. Then P(A|Hc
1) = 1,

that is, if Greta is not a carrier, the puppies are disease free with probabil-

ity 1. Because of independence P(A|H1) = 0.5∗0.5 and according to the total

probability formula

P(A)= P(A|H1)P(H1)+P(A|Hc
1)P(Hc

1)= 0.5 ·0.5 ·0.1+1 ·0.9 = 0.925.

By Bayes formula,

P(H1|A) =
P(A|H1)P(H1)

P(A)
= 0.025/0.925 = 0.027.
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3.a3 Gambling Fallacy. An event that happened on August 18, 1913 in Le

Grand Casino de Monte Carlo made headlines. The ball of a roulette wheel

landed on “black” 26 times in a row. Out of 37 slots denoted by 0-36 (French

roulettes have no a 00-slot), 18 slots (2, 4, 6, 8, 10, 11,13, 15, 17, 20, 22, 24,

26, 28, 29, 31, 33, 35) are black, so the probability of a ball lending in black is

18/37.

(a) What is the probability that in the next 26 spins of a similar roulette

wheel the ball lands on “black” every single time.

(b) After the ball landed in black slot 15 times in a row, the players in

Le Grand Casino frantically started to bet on red, and that evening Casino

amassed a profit in millions of Francs. If one started to bet on black with $1,

what capital he/she will have after 26th consecutive black, if Casino doubles

the bet placed on winning color.





Chapter 4

Sensitivity, Specificity, and Relatives

4.1 Stacked Auditory Brainstem Response.

TBA

4.2 Hypothyroidism.

TBA

4.3 Alzheimer’s.
P(T|D) = 436/450 = 0.9689 and P(T c |D c)= 495/500 = 0.99. The first is the probability

that a patient who shows symptoms of Alzheimer’s disease would test positive (sensitivity)

and the second is the probability that a subject who does not have symptoms of Alzheimer

would test negative (specificity). Note that P(T c |D) = 1−P(T|D) = 0.0311 and P(T|D c) =
1−P(T c|D c)= 0.01.

By Bayes’ formula

P(D|T) = P(T|D)P(D)/P(T)

=
P(T|D)P(D)

P(T|D)P(D)+P(T|D c)P(D c)

=
0.9689×0.113

0.9689×0.113+0.01×0.887
= 0.9251.

4.4 Test for Being a Duchenne Muscular Dystrophy Carrier.

TBA

4.5 Parkinson’s Disease Statistical Excursions.

TBA

4.6 Blood Tests in Diagnosis of Inflammatory Bowel Disease.

Sol. The number of TP is (sensitivity × number of people with the disease),

0.903×103= 93.009 ≈ 93. To find TN, we multiply specificity with the number

of controls, 0.8×50 = 40. The table is

21
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disease present (D) no disease present (C) total

test positive (P) 93 10 103

test negative (N) 10 40 50

total 103 50 153

Prevalence can be evaluated from the table. It is the proportion of peo-

ple with the disease among all 153 subjects in the experiment, 103/153 =
0.6732 ≈ 67.3%.

Positive predicted value is the proportion of people who have the disease

among the subjects who tested positive. In this case it happened to coincide

with sensitivity, 93/103= 90.3% .

4.7 Carpal Tunnel Syndrome Tests.

TBA

4.8 Hepatitic Scintigraphy.

TBA

4.9 Apparent Prevalence.

TBA

4.10 HAAH Improves the Test for Prostate Cancer.

(a) Recall that sensitivity is the ratio of true positives and total number of

subjects with the disease. Since 233 subjects are with the disease, the sensitiv-

ity of 95% means that there are 233 ·0.95 = 221.35 ≈ 221 true positives. Thus

tp = 221. This gives 233−221= 12 false negatives, thus fn = 12.

Similarly, 43 subjects do not have disease. Since specificity is 0.93, the true

negatives are 43 ·0.93 = 39.99 ≈ 40. This means tn=40 and fp = 3. The table

is

disease no disease total

test positive tp=221 fp=3 tot.pos = 224

test negative fn=12 tn=40 tot.neg = 52

total tot.dis=233 tot.ndis=43 total=276

(b)
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P( disease | test positive)

=
P(test positive | disease)P( disease)

P(test positive | disease)P( disease)+P(test positive | no disease)P( no disease)

=
sensitivity ·prevalence

sensitivity ·prevalence+ (1-specificity) · (1- prevalence)

=
221/233×7/100

221/223×7/100+3/43×93/100

= 0.5058

(c) PPV = tp

tp+fp = 221/224= 0.9866 .

In both (b) and (c) we have found positive predicted value, that is P( disease | test positive).

However, (b) and (c) differ in the information where the subject comes from,

which is critical for the prevalence. If the subject comes from the general pop-

ulation then the prevalence is 0.07 and that is used in place of P( disease) in

the Bayes formula.

If we selected the subject from the group involved in this study (that is,

selected person is one of 276 subjects), then the “prevalence” refers to this

particular group and is
tp+fn
total n

= 233/276.

4.11 Creatinine Kinase and Acute Myocardial Infraction.

TBA

4.12 Asthma.

TBA

4.1 Additional Problems

4.a1 Spectral Indices of Mammogram Images Predictive of BC. Can

the properties of mammogram backgrounds be indicative of breast cancer?

The collection of digitized mammograms was obtained from the University of

South Florida’s Digital Database for Screening Mammography (DDSM). Im-

ages from this database are coupled with cancer status verified through biopsy.

For every image a slope of wavelet spectra was calculated (Hamilton et al.,

20111), and corresponding cancer status recorded. Only the craniocaudal pro-

jection images were used: the right breast image for all normal cases, and the

cancerous breast (right or left) image for cancer cases. There were 105 normal

(benign) cases, and 72 cancer cases considered. A malignant mammogram and

subimage used to find the spectral slope are presented in Fig. 4.1.

1 Erin K. Hamilton, Seonghye Jeon, Pepa Ramírez Cobo, Kichun Sky Lee, and Brani Vi-

dakovic (2011). Diagnostic Classification of Digital Mammograms by Wavelet-Based Spec-

tral Tools: A Comparative Study. Proceedings of BIBM 2011, Atlanta GA
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Fig. 4.1 Left panel: right CC mammogram corresponding to a malignant case. Right panel:

subimage of size 1024×1024 considered for the analysis

The data set sslopesstatus.dat contains two columns: slope of the spec-

tra and breast cancer status. The goal is to propose and evaluate a test for

BC based only on the slope of mammogram wavelet spectra. A MATLAB file

cancerslope.m reads in the data and calculates and plots the ROC.

(a) Find AUC. How would you grade this test?

(b) Find Youden Index (YI - maximal distance of ROC from the 45◦ line).

(c) What threshold for the slope would you suggest so that mammograms

with slopes exceeding this threshold are considered positive for BC. Assume

that the errors of misclassification are equally bad.

(d) What are the sensitivity/specificity of the test at the threshold suggested

in (c)?

Hint. Calculations similar to (a-d) can be found in rocada.m.



Chapter 5

Random Variables

5.1 Phase I Clinical Trials and CTCAE Terminology.

X = [0 1 2 3 4 5];

px = [0.620 0.190 0.098 0.067 0.024 0.001];

sum(px) %check that the probabilities sum up to 1

w=0.02; ms=6; %plotting parameters: width of bar and marker size

xx = X; yyp= px;yyc= cumsum(px);

figure(1)

subplot(211)

bar(xx, yyp, w,’b’)

hold on

plot(xx,yyp, ’bo’,’MarkerSize’,ms, ’MarkerFaceColor’,’b’)

hold off

axis tight

subplot(212)

stairs(xx,yyc)

hold on

plot(xx(2:end),yyc(1:end-1),’b>’)

plot(xx, yyc, ’bo’, ’MarkerFaceColor’,’b’ )

hold off

% Expectation

EX=X*px’ %or EX = sum(X .* px)

% k-th moment EXk = (X.^k)*px’

EX2 = (X.^2) * px’ %second moment

% Variance (second central moment)

VarX = EX2 - EX^2 %or VarX=sum( (X-EX).^2 .* px )

5.2 Mendel and Dominance.

A child from hybrid parents will be DD, Dd, or dd with probabilities

of 1/4, 1/2, and 1/4, respectively. One offspring will give outward dominant

25
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Fig. 5.1 CTCAE discrete random variable (a) probability mass function and (b) cdf.

appearance with probability 1/4 + 1/2 = 3/4. Now we have Binomial sampling

with parameters n= 4 and p= 3/4 and the required probability is 27/64.

5.3 Chronic Kidney Disease.

(a) binopdf(3, 10, 0.17) = 0.1600,

(b) 1-binopdf(0, 5, 0.4)=0.9222,

(c) (i) binopdf(3, 5, 6/16)=0.2060, (ii) 1-binopdf(0, 5, 6/16)=0.9046, and

(d) geopdf(3-1, 0.4) = 0.1440.

5.4 Ternary channel.

TBA

5.5 Conditioning a Poisson.

P(X1 = k|X1 + X2 = n) =
P(X1 = k, X1 + X2 = n)

P(X1+ X2 = n)

=
P(X1 = k, X2 = n−k)

P(X1+ X2 = n)

=
λk

1
k! e−λ1 × λ(

2n−k)

(n−k)! e−λ2

(λ1+λ2)n

n! e−λ1−λ2

=
(

n

k

)

(

λ1

λ1 +λ2

)k

×
(

λ2

λ1 +λ2

)n−k

,

which is B in
(

n, λ1
λ1+λ2

)

..

5.6 Rh+ Plates.

TBA
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5.7 Your Colleague’s Misconceptions About Density and CDF.

TBA

5.8 Falls among elderly.

TBA

5.9 Cell clusters in 3-D Petri dishes.

5.35 Heat Production by a Resistor.

TBA TBA

5.10 Left-handed Twins.

TBA

5.11 Pot Smoking is Not Cool!

% Solution

disp(’(a) Bin(12, 0.7): P(7 <= X <= 9)’);

%(a) using binopdf(x,n,p)

disp(’(a)-using pdf’); binopdf(7, 12, 0.70) ...

+ binopdf(8, 12, 0.70) + binopdf(9, 12, 0.70)

% ans = 0.6293

% using binocdf(x, n, p)

disp(’(a)-using cdf’); binocdf(9, 12, 0.70) - binocdf(6, 12, 0.70)

% ans = 0.6293

%(b) at most five i.e., X <= 5

disp(’(b) Bin(12, 0.7): P(X <= 5)’); binocdf(5, 12, 0.70)

% ans = 0.0386

%(c) not less than 8 is 8,9,10,11,12 or complement of <=7

disp(’(c) Bin(12, 0.7): P(X >= 8)’); 1-binocdf(7, 12, 0.70)

% ans = 0.7237

%---------------------------------

5.12 Emergency Help by Phone.

(a) Y =number of calls until first call answered late (including the late one),

Y ∼G eom(0.1), EY = 10, ( [m var] = geostat(0.1); mean = m + 1 ).

(b) X =number of calls of the next 10 that are answered late, X ∼B in(10,0.1)

P(X = 1)=
(10

1

)

·0.1 · (0.9)9 = 0.3874. ( binopdf(1, 10, 0.1))

5.13 Min of Three.

The sample space looks like the following table and each entry has the

probability (1/3)3 = 1/27, because of independence.
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X1 X2 X3 M Mx R X1 X2 X3 M Mx R X1 X2 X3 M Mx R

111 1 1 0 211 1 2 1 311 1 3 2

112 1 2 1 212 1 2 1 312 1 3 2

113 1 3 2 213 1 3 2 313 1 3 2

121 1 2 1 221 1 2 1 321 1 3 2

122 1 2 1 222 2 2 0 322 2 3 1

123 1 3 2 223 2 3 1 323 2 3 1

131 1 3 2 231 1 3 2 331 1 3 2

132 1 3 2 232 2 3 1 332 2 3 1

133 1 3 2 233 2 3 1 333 3 3 0

By counting the equally-likely outcomes from the table, we find the proba-

bility distribution functions and cumulative distribution functions for M and

R.

M 1 2 3

p 19/27 7/27 1/27
FM(m)=















0, m < 1

19/27, 1≤ m < 2

26/27, 2≤ m < 3

1, m ≥ 3

and

R 0 1 2

prob 1/9 4/9 4/9
FR(r) =















0, r < 0

1/9, 0≤ r < 1

5/9, 1≤ r < 2

1, r ≥ 2

This is not an elegant solution. A somewhat more elegant solution is the

following: Since M is the minimum of X1, X2 and X3:

P(M > m) = P(X1 > m, X2 > m, X3 > m) = [P(X1 > m)]3 =















1, m < 1

(2/3)3, 1 ≤ m < 2

(1/3)3, 2 ≤ m < 3

0, m ≥ 3.

Now, P(M = 2) = P(M > 1)−P(M > 2) = (2/3)3 − (1/3)3 = 7/21, and P(M = 3) =
P(M > 2)−P(M > 3)= (1/3)3−0= 1/27. Since, P(M = 1)= 1−P(X = 2)−P(X = 3),

the distribution for M follows.

For distribution of R the following consideration is useful. There are 33

possible realizations (number of words of length k in alphabet consisting of n

symbols is nk). R can be 0, 1, or 2. It is easy to see that event {R = 0} corre-

sponds to 3 realizations: 000, 111, and 222. Thus, P(R = 0)= 3/27= 1/9.

The difference {R = 1} happens when the “words” of length 3 come from

alphabets {1,2} or {2,3} and not all “letters” are the same. There are 23+23−4

such words. We subtract 4 since words 111 and 222 can be formed in alphabet
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{1,2} and 222 and 333 in alphabet {2,3}. Thus P(R = 1)= 12/27. Finally, P(X =
2)= 1−3/27−12/27 = 12/27.

5.14 Cystic Fibrosis in Japan.

TBA

5.15 Random Variables as Models.

(a) The rate of gastrointestinal reactions per prescription is 538/9160000,

and per 10000 prescriptions is 538/9160000 × 10000= 0.5873.

(b) If λ = 0.5873, and X is the number of gastrointestinal reactions per

10000 prescriptions, then the suggested model is X ∼ P oi(0.5873). Further-

more,

P(X = 2)=
0.58732

2!
e−.5873 = 0.0959,

i.e., about 9.6%.

(c) The probability is P(X ≥ 2), which is equal to 1−P(X < 2)= 1−P(X ≤ 1),

since the Poisson model is discrete and P(X < 2)= P(X ≤ 1). Then,

P(X ≥ 2) = 1−P(X ≤ 1)

= 1−P(X = 0)−P(X = 1)= 1−
0.58730

0!
e−.5873−

0.58731

1!
e−.5873 = 0.1177.

i.e., about 11.8%. Recall, 0! = 1, by definition.

If MATLAB is used, then

lambda = 538/9160000 * 10000 %answer for (a)

%lambda = 0.5873

p2 = lambda^2/2 * exp(-lambda) %answer for (b)

%p2 = 0.0959

p2plus = 1 - lambda^0/1 * exp(-lambda)...

- lambda^1/1 * exp(-lambda) %answer for (c)

%p2plus = 0.1177

Parts (b) and (c) can be found via poisspdf and poisscdf as

poisspdf(2, 0.5873)

%ans = 0.0959

1-poisscdf(1, 0.5873)

%ans = 0.1177

5.16 Additivity of Gammas.
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The moment generating function for gamma G a(r,λ) distribution is λr

(λ−t)r .

By convolution property of moment generating functions,

mY (t) =
n

∏

i=1

mX i
(t) =

λr1

(λ− t)r1

λr2

(λ− t)r2
. . .

λrn

(λ− t)rn
=

λr

(λ− t)r
,

which is the moment generating function of G a(r,λ). Since the moment gen-

erating functions uniquely determine distributions when they exist, the ad-

ditivity property of Gammas with respect to the shape parameter is proved.

5.17 Memoryless property.

Note that in general {X ≥ u+v}∩ {X ≥ u} is equivalent to {X ≥ u+v}.

Proof for exponentials. Since, for the exponential distribution P(X ≤ x) =
1− e−x/β,x ≥ 0 is the cdf, then the residual life is P(X ≥ x)= e−x/β.

Then,

P(X ≥ u+v|X ≥ u) =
P({X ≥ u+v}∩ {X ≥ u})

P(X ≥ u)
=

P(X ≥ u+v)

P(X ≥ u)
=

e−(u+v)/β

e−u/β
= e−v/β =P(X ≥ v).

Proof for geometric. Denote q = 1− p. Then P(X ≥ x) = 1−P(X < x) = 1−
P(X ≤ x−1) = 1−

∑x−1
k=0

qk p. Since,
∑x−1

k=0
qk = 1−qx

1−q
and 1− q = p, the residual

life is P(X ≥ x)= 1− p
1−qx

1−q
= 1− (1− qx)= qx.

Now, as for the exponentials,

P(X ≥ u+v|X ≥ u) =
P(X ≥ u+v)

P(X ≥ u)
=

qu+v

qu
= qv =P(X ≥ v).

5.18 Rh System.

TBA

5.19 Blood Types.

(a) X ∼B in(24,0.374) P(X = 8)=
(24

8

)

0.3748(1−0.384)24−8 = 0.1566.

EX = np= 8.976, Var X = npq = 5.619.

(b) hygecdf(2,16,8,5) = 0.5.

(c) X ∼P oi(500×0.006). P(X ≥ 1)= 0.9502.

(d) X ∼G eo(0.085). EX = 1/p= 11.7647.

5.20 Variance of the Exponential.

EX2 =
∫∞

0 x2λe−λxdx = [[u= x2;dv = λe−λx;du= 2xdx;v =−e−λx]]−x2e−λx|∞0 +

2
∫∞

0 xe−λxdx = 0+2
∫∞

0 xe−λxdx = [[u= x;dv = e−λxdx;du= dx;v =− 1
λ

e−λx]]−
2x
λ e−λx|∞0 + 2

λ

∫∞
0 e−λxdx = 0+ 2

λ

∫∞
0 e−λxdx = 2

λ × 1
λ = 2/λ2.
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Since Var X = EX2 − (EX )2 and EX = 1/λ, it follows that Var X = 2/λ2 −
(1/λ)2 = 1/λ2.

5.21 Equipment Aging.

(a) Note that for exponential distribution, P(T > x)= 1−P(T ≤ t) = 1−F(t) =

1−(1−e−λt)= e−λt. Then, 0.8=P(T > 10)= e−10λ. That means, λ=− 1
10 ln(0.8)=

0.0223.

(b) ET = 1/λ= 44.843 and V arT = 2010.9

(c) Let tp be 100p percentile. Then F(tp)= p. Solving 1−e−λtp = p we obtain

an exact formula for 100p percentile, tp =− 1
λ ln(1− p).

• Median t0.5 =− 1
0.0223 ln(0.5)= 31.0828

• Q1: t0.25 =− 1
0.0223 ln(0.75)= 12.9005

• Q3 t0.75 =− 1
0.0223 ln(0.25)= 62.1657

• IQR =Q3 −Q1 = 62.1657−12.9005= 49.2652
In MATLAB

expinv([0.25 0.5 0.75], 1/0.0223)

%ans = 12.9005 31.0828 62.1657

5.22 A Simple Continuous Random Variable.

TBA

5.23 2-D Continuous Random Variable Question.

(a) C = e

(b) fX (x)= ex+1−1
ex . fY (y)= e(1−(1+y)e−y)

y2 .

5.24 Insulin Sensitivity.

Hint: Here MATLAB’s parametrization of gamma density is used, α = r

and β= 1/λ. In terms of α and β, EX =αβ and Var X =αβ2.

5.25 Correlation Between a Uniform and its Power.

TBA

5.26 Precision of Lab Measurements.

(a) P(measurement X accurate) = P(|X | < 0.5) = P(−0.5 < X < 0.5) =
∫0.5
−0.5 3x2/16dx = 3

16
x3

3 |0.5
−0.5 = 1/16(1/8− (−1/8))= 1/64= 0.0156.

(b) For x <−2, F(x)= 0 and for x > 2, F(x)= 1. For −2≤ x ≤ 2,

F(x)=
∫x

−2

3

16
t2dt=

t3

16

∣

∣

x
−2 = x3/16− (−2)3/16 = x3/16+1/2.

In MATLAB,
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Fig. 5.2 F(x)= x3/16+1/2, −2≤ x≤ 2; F(x)= 0, x<−2; F(x)= 1, x > 2.

x = - 2:0.01:2;

y = x.^3/16 + 1/2;

plot(x, y, ’linewidth’,4)

xn = -4:0.01:-2;

yn = 0 .* xn;

xp = 2:0.01:4;

yp = ones(size(xp));

hold on

plot(xp, yp, ’linewidth’,4)

plot(xn, yn, ’linewidth’,4)

(c) EY = EX2 =
∫2
−2 x2 3

16 x2dx = 3
16

x5

5

∣

∣
2
−2 = 3(32−(−32))

16·5 = 192/80= 2.4

5.27 Lifetime of Cells.

%expected life: beta = 4 mo

% 150 days = 5 mo

1-expcdf(5,4) %(Cells(a))

%ans = 0.2865

% 1 y= 12 mo; Poisson(12/4)

% Observed on average expectation of Poisson(3) = 3.

% Or rationalize:

% 12/average life time = 3, but this is informal

1-poisscdf(5, 3) %(Cells(b))

%ans = 0.0839

%

1 - gamcdf(12, 3, 4) %(Cells(c))

%ans = 0.4232
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%

%(Cells(d)): By memoryless property

% P(X>=7.2|X>=2.2)=P(X>=7.2-2.2)=P(X>=5)

% which is equal to (Cells(a)), 0.2865

5.28 Silver-coated Nylon Fiber.

%Silver Coated Nylon Fibers

% (a)

1 - expcdf(10, 10) % 0.3679

% (b)

expcdf(15,10) %0.7769

% (c) is the same as (a) because of memoryless property.

5.29 Xeroderma pigmentosum.

TBA

5.30 Failure Time. TBA

5.31 Beta Fit.

TBA

5.32 Uncorrelated but Possibly Dependent.

Enough to show that Cov(Z,W) = 0. This follows from Cov(Z,W) = E((X +

Y )(X −Y ))= E(X2 −Y 2)= EX2 −EY 2, and EX2 = EY 2.

5.33 Nights of Mr Jones.

Monday Tuesday Wednesday Thursday Friday

Prob(Insomnia) 1 0.4000 0.4600 0.4540 0.4546

Prob(Sleep Well) 0 0.6000 0.5400 0.5460 0.5454

5.34 Stationary Distribution of MC.

TBA

5.35 Heat Production by a Resistor.

TBA
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5.1 Additional Problems

5.a1 Africanized Honey Bee. Matis et al. (1992), also Pal et al. (2005), mod-

eled the ’transit-time’ distribution of Africanized honey bee spread through

northern Guatemala and Mexico. Data were collected on the first capture

times of the bee at various monitoring transects in northern Guatemala and

on the eastern and western costs of Mexico. The time intervals between con-

secutive sightings (in months) are reported. The transit time (months/100 km)

data set consists of 45 observations.

5.3 1.8 4.2 5.7 3.8 0.8 1.4 3.5 17.5

4.6 0.8 6.3 2.9 0.6 1.9 2.0 6.7 5.5

2.5 2.2 6.7 5.7 10.0 3.3 3.5 20.0 1.6

8.3 4.8 20.0 3.6 8.2 1.3 4.0 5.0 1.7

2.0 2.9 19.2 1.1 1.4 1.5 3.2 8.6 2.2

It was suggested that gamma G a(r,λ) distribution is an appropriate model

for the transition time, T. Here, r is the shape parameter and λ is the rate

parameter.

(a) It is known that ET = r/λ and V arT = r/λ2. Find moment matching

estimators for r and λ by replacing ET and V arT with T and s2.

(b) For r and λ as in (a), find the probability that transit time T exceeds 15

(month/100 km).

(c) What is the 0.8 quantile of T, that is, find t∗ for which P(T ≤ t∗)= 0.8.

• Matis, J. H., Rubink, W. L., Makela, M. (1992). Use of the gamma distribu-

tion for predicting arrival times of invading insect populations. Environmental

Entomology, 21, 431–440.

• Pal, N., Jin , C., Lim W.-K. (2005). Handbook of Exponential and Related

Distributions for Engineers and Scientists, Chapman and Hall/CRC.

Hint: In MATLAB be careful about the parametrization of gamma distribu-

tion. MATLAB uses scale parameter β= 1/λ instead of rate parameter λ.

% Africanized Honey Bee transit times

t =[...

5.3 1.8 4.2 5.7 3.8 0.8 1.4 3.5 17.5 ...

4.6 0.8 6.3 2.9 0.6 1.9 2.0 6.7 5.5 ...

2.5 2.2 6.7 5.7 10.0 3.3 3.5 20.0 1.6 ...

8.3 4.8 20.0 3.6 8.2 1.3 4.0 5.0 1.7 ...

2.0 2.9 19.2 1.1 1.4 1.5 3.2 8.6 2.2];

tbar = mean(t) %5.1067

s2 = var(t) %25.0884

lamhat = tbar/s2 %0.2035
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rhat = (tbar)^2 /s2 %1.0394

%(b) 1/lamhat = 4.9129

1 - gamcdf(15, 1.0394, 4.9129) %0.0509

%(c)

gaminv(0.8, 1.0394, 4.9129) %8.1922

5.a2 Imperfectly Observed Poisson. Suppose that the number of par-

ticular experimental events in time interval [0,T] has a Poisson distribution

P oi(λT). A student who is observing the experiment may fail to count any of

the events. An event is counted with probability equal to p and missing one

event is independent of missing or counting the others. What is the distribu-

tion of events in [0,T] that are counted?

By total probability formula,

P(n events counted) =
∞
∑

k=n

(P(n events counted|k events happened)P(k events happened)

=
∞
∑

k=n

(

k

n

)

pn(1− p)k−n(λT)k exp{−λT}/k!

= exp{−λT}(pλT)n/n!
∞
∑

k=n

[(1− p)λT]k−n

(k−n)!

= (pλT)n exp{−pλT}/n!

after representing
(

k
n

)

by factorials and observing that
∑∞

k=n

[(1−p)λT]k−n

(k−n)! =
∑∞

v=0
[(1−p)λT]v

v! = exp{(1− p)λT}.

Thus, the number of counted events is again Poisson but with the rate pλT.

5.a3 The Smallest of k Exponentials. Inter-event times in a particular

experimental process are distributed as exponential E (λ) where λ is the rate

parameter. Suppose that k inter-event times are recorded. What is the distri-

bution of the minimal inter-event time?

Let Y =min1≤i≤k X i . Then,

FY (y) = P(Y ≤ y)= 1−P(Y > y)= 1−P(X1 > y, X2 > y, . . . , Xk > y)

= 1−
k

∏

i=1

P(X i > y)= 1−
(

e−λy
)k

= 1− eλky.

Thus, FY (y) is the cdf of exponential distribution with parameter λk.





Chapter 6

Normal Distribution

6.1 Standard Normal Calculations.

TBA

6.2 Nonnegative Definiteness of Σ Constrains ρ.

TBA

6.3 Herrings.

normcdf(13,10.5,1.6) - 1/2 %% normcdf(a,a,b)=1/2, why?

% ans = 0.4409 %%about 44%

1-chi2cdf(10, 8)

% ans = 0.2650 %%about 26.5%

norminv(0.9, 10.5, 1.6)

% ans = 12.5505

6.4 Sea Urchins.

Here, X ∼N (2.83,0.792).

(a) P(2.3 ≤ X ≤ 4)= P
(

2.3−2.83
0.79 ≤ Z ≤ 4−2.83

0.79

)

= P(−0.67≤ Z ≤ 1.48)=Φ(1.48)−
Φ(−0.67)=Φ(1.48)− (1−Φ(0.67))= 0.9306− (1−0.7486) = 0.6792.

In MATLAB

normcdf(1.48)-normcdf(-0.67)

%ans = 0.6791

% or more precisely

normcdf(4, 2.83, 0.79) - normcdf(2.3, 2.83, 0.79)

%ans = 0.6796

(b) P(X > t∗) = 0.95, is the same as P(X ≤ t∗) = 0.05. The 5th percentile of

standard normal is -1.64, and t∗−2.83
0.79 =−1.64. The solution is t∗ = 2.83−1.64×

0.79 = 1.53.

37
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In MATLAB

norminv(0.05, 2.83, 0.79)

%ans = 1.5306

6.5 Pyruvate Kinase for Controls is Normal.

TBA

6.6 Leptin.

TBA

6.7 Pulse Rate.

TBA

6.8 Side Effects.

Correct answer: (c).

normcdf(0.30, 0.25, 0.08)

%ans = 0.7340

6.9 Macrolepiota Procera.

%(a)

normcdf(250, 230, 25)-normcdf(200, 230, 25)

% ans = 0.6731

% OR

normcdf((250 - 230)/25)-normcdf((200 - 230)/25)

%ans = 0.6731

%(b)

norminv(0.95, 230, 25)

% ans = 271.1213

6.10 Duration of Gestation in Humans.

Under the assumed model, the probability that randomly selected preg-

nancy case has a duration period equal or larger than 349 is 2.6×10−12, less

than 3 out of a trillion. The evidence of adultery is overwhelming. Apparently,

the judges have not taken a course in statistics.

6.11 Tolerance Design.

Denote by Dpin and Dhole the random dimensions of interest. According

to the conditions, σpin = tpin /3= 0.001.

Dpin ∼N (5,0.0012),

Dhole ∼N (5.005,σ2
hole),
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and

Dgap = Dhole −Dpin ∼N (5.005−5,0.0012 +σ2
hole).

It is given that P(Dgap ≥ 0.001)= 0.999, which, after standardizing, becomes

P






Z ≥

0.001−0.005
√

0.0012 +σ2
hole






= 0.999.

0.001−0.005
√

0.0012 +σ2
hole

= z0.001 =−3.0902 (norminv(0.001)=−3.0902).

From the above,

0.004 = 3.0902
√

0.0012 +σ2
hole

⇒σ2
hole =

(

0.004

3.0902

)2

−0.0012 = 6.7551×10−7.

Finally, the tolerance thole is 3 ·
p

6.7551×10−7 = 0.0025.

6.12 Ulnar Variance.

The ulnar variance X has normal N (0.74,1.462) distribution.

(a) Need P(X < 0) = P(Z < 0−0.74
1.46 ) = Φ(−0.74/1.46). In MATLAB, there are

two equivalent ways of getting the solution, using standard normal cdf from

standardized argument or using general normal cdf directly.

%(a)

normcdf(0, 0.74, 1.46) % 0.3061

% or

normcdf( (0 - 0.74)/1.46 ) % 0.3061

(b) C is the difference between two normal random variables. Recall, if

X1 ∼ N (µ1,σ2
1) and X2 ∼ N (µ2,σ2

2), then X2 − X1 ∼ N (µ2 −µ1,σ2
1 +σ2

2). Sim-

ilar problem was discussed in class – “piston problem” in combining normal

random variables.

mu1 = 0.19; mu2 = 1.52;

sigma1 = 1.43; sigma2 = 1.56;

muC = mu2 - mu1 %muC = 1.3300

sigmaC = sqrt( sigma1^2 + sigma2^2 ) %sigmaC = 2.1162

1 - normcdf( 1, muC, sigmaC) %ans = 0.5620

6.13 Independence of Sample Mean and Standard Deviation in Nor-

mal Samples.



40 6 Normal Distribution

randn(’state’,1) %fix random seed

x=normrnd(0, 1,[100, 1000]); %matrix 100 x 1000

xx = mean(x); yy=var(x); %done columnwise

corr(xx’, yy’) %0.0294

%

plot(xx, yy, ’o’, ’MarkerFaceColor’,’g’,...

’MarkerEdgeColor’,’k’,’MarkerSize’,8)

The scatterplot in Figure 6.1 shows no dependence patterns.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Fig. 6.1 Scatterplot of 1000 points with first coordinate being the mean of 100 standard

normals and second coordinate being their variance. The scatterplot suggest no relationship

between the coordinates. For this case, the coefficient of correlation is 0.0294.

6.14 Sonny and Multiple Choice Exam.

1- normcdf(34.5, 100*0.25, sqrt(100*0.25*0.75))

%ans = 0.0141

6.15 Amount of Liquid in a Bottle.

normcdf(0.48, 0.5, 0.01)

%ans = 0.0228

norminv(0.95, 0.5, 0.01)

%ans = 0.5164

6.16 Meristem Cells in 3D.

Answer: 0.0002. P

(

X2

σ2 + Y 2

σ2 + Z2

σ2 ≥ 702

250

)

= P(χ2
3 ≥ 10.6)= 0.0002.

6.17 Glossina morsitans.
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%Tsetse Fly

clear all

microns = 15:35;

freq = [7 31 148 230 326 252 237 184 143 ...

115 130 110 127 133 113 96 54 44 11 7 2 ];

sample =[];

for i = 1:21

sample =[sample; repmat(microns(i),freq(i),1)];

end

bar(microns, freq)

mix = gmdistribution.fit(sample,2);

mix.mu

%ans = 26.523 19.493

mix.Sigma

%ans(:,:,1) =10.113 ans(:,:,2) = 3.141

mix.PComponents

%ans = 0.45551 0.54449
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6.18 Stabilizing Variance.

For the exponential E (λ), E(X ) = λ and Var X = λ2, so σ2 = µ2. Thus, the

integral in (??) is
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g = c

∫

dx

|x|
= c log x+d.

For the binomial case, σ2 = np(1 − p) = np− np2 = np− (np)2

n
= µ− mu2

n
. the

integral in (??) is

g = c

∫

dx
p

x− x2/n
.

6.19 From Normal to Lognormal.

TBA

6.20 The Square of a Standard Normal.

The transformation y = g(x) = x2 has two inverse branches, h1(y) = p
y

and h2(y) = −py. Also, fX (x) = 1
2π e−x2/2. Then by the equation in (5.10) on p.

174,

fY (y) = fX (h1(y))|h′
1(y)|+ fX (h2(y))|h′

2(y)|

=
1

p
2π

exp{−(
p

y)2/2}

∣

∣

∣

∣

1

2
p

y

∣

∣

∣

∣

+
1

p
2π

exp{−(−py)2/2}

∣

∣

∣

∣

−
1

2
p

y

∣

∣

∣

∣

=
1

p
2π

y−1/2e−y/2 =
1

p
2Γ

(

1
2

) y1/2−1e−y/2, y≥ 0.

since
p
π=Γ

(

1
2

)

.

6.1 Additional Problems

6.a1 Area Spanned by Whiskers. In MATLAB’s boxplot the maximum

whisker length is by default 1.5 IQR, where IQR is the interquartile range

Q3 −Q1. For a standard normal distribution, what area under the density

is spanned by a box-plot with two maximal whiskers (i.e., with range [Q1 −
1.5 IQR,Q3 +1.5 IQR]).

Sol.

>> norminv(0.25)

ans = -0.6745 %Q_1, Q_3 = - Q_1

>> normcdf(4* 0.6745) - normcdf(-4* 0.6745) % 2*Q_3=IQR, 1+3=4

ans = 0.9930
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Point and Interval Estimators

7.1 Tricky Estimation.

Suppose that the total number of misprints is T. Let p1 be the accuracy

of first reader (probability that he/she will find a particular misprint), and let

p2 be the accuracy of the second reader. Because of independence, their joint

accuracy is p1 p2 (“joint” in sense that they both find a particular misprint).

None of the T, p1 or p2 are known, but an estimate of p1T is 60, of p2T is 70,

and p1 p2T is 50.

Thus,

T =
(p1T) · (p2T)

p1 p2T

can be estimated by 60·70
50 = 84.

On the other hand, the total number of misprints spotted by both is 60+70-

50 = 80. Thus, it follows that the estimated number of remaining misprints is

84-80=4.

7.2 Laplace’s Rule of Succession.

TBA

7.3 Neurons Fire in Potter’s Lab.

TBA

7.4 The MLE in a Discrete Case.

TBA

7.5 MLE for Two Continuous Distributions.

TBA

7.6 Match the Moment.

43
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Hint: L(p)= (1− p)
∑

i X i · pn.

TBA

7.7 Weibull Distribution.

HINT: Recall that Γ(n) = (n−1)!

TBA

7.8 Rate Parameter of Gamma.

TBA

7.9 Estimating Parameter of Rayleigh Distribution.

(a) σ̂2
mm1 = 2·(X̄ )2

π
and σ̂2

mm2 =
∑n

i=1
X2

i

2n
. (b) σ̂2

mle
= σ̂2

mm2. (c) σ2
mm1 =

7.7986, σ2
mm2 = 6.75. (d) Yes. Since λ= 1

2σ2 by the invariance of MLE, λ̂mle =
1

2(σ̂mle )2
.

7.10 Monocytes Among Blood Cells.

TBA

7.11 Estimation of θ in U (0,θ).

TBA

7.12 Estimating the Rate Parameter in a Double Exponential Distri-

bution.

TBA

7.13 Reaction Times I.

n=20; xb=0.9; s=0.12;

[xb-tinv(0.975,19)*s/sqrt(n), xb+tinv(0.975,19)*s/sqrt(n)]

%ans = 0.8438 0.9562

[xb-tinv(0.9925,19)*s/sqrt(n), xb+tinv(0.9925,19)*s/sqrt(n) ]

%ans = 0.8282 0.9718

[(n-1)*s^2/chi2inv(0.975, n-1), (n-1)*s^2/chi2inv(0.025,n-1)]

%ans = 0.0083 0.0307

7.14 Reaction Times II.

[xb-norminv(0.9925)*s/sqrt(n), xb+norminv(0.9925)*s/sqrt(n)]

%ans = 0.8347 0.9653

1.96^2*s^2*4/0.07^2

%ans = 45.1584
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7.15 Toxins.

X=[3 2 5 3 2 6 5 4.5 3 3 4];

Xbar = mean(X)

%Xbar = 3.6818

n=length(X)

%n = 11

s = std(X)

%s = 1.3091

[Xbar - tinv(0.995, n-1) * s/sqrt(n), ...

Xbar + tinv(0.995, n-1) * s/sqrt(n)]

%ans = 2.4309 4.9327

7.16 Bias of s∗.

TBA

7.17 COPD Patients.

n=157; X=87;

phat = X/n

%phat = 0.5541

qhat = 1 - phat

%qhat = 0.4459

[phat - norminv(0.95)*sqrt(phat*qhat/n), ...

phat+norminv(0.95)*sqrt(phat*qhat/n)]

%ans = 0.4889 0.6194

n=(2*norminv(0.95)*sqrt(0.5 * 0.5)/0.03)^2

% n = 3.0062e+003

(i) An estimator for p is p̂ = X /n Exact distribution for X is binomial

B in(n, p). Since n = 157 is large, normal approximation to binomials hold

and X has approximately normal distribution with mean np and variance

npq. Thus, p̂ = X /n has approximately normal distribution with expectation

np/n= p and variance npq/n2 = pq/n.

(ii) From approximation in 4.1 the (1−α)×100% confidence interval is:

[

p̂− z1−α/2

√

p̂ q̂/n, p̂+ z1−α/2

√

p̂ q̂/n
]

.

(iii) The sample size needed is n = 3007. Note that we conservatively took

p̂ = q̂ = 0.5 since sample size is prospective in nature and p̂ is not observed. A

good estimate p̂ is justified especially if the population proportion p is close to

either 0 or 1.
(iv)
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phat = 0.5541; p0 = 0.5;

qhat = 1- phat; q0 = 1 - p0;

n = 157;

z = (phat - p0)/sqrt( p0 * q0/n )

%z = 1.3557

pvalue = 1-normcdf(1.3557)

% pvalue = 0.0876

At significance level α = 5% the hospital cannot support their claim – H0

is not rejected. If α = 0.10, H0 is rejected, the hospital’s claim is statistically

supported.

7.18 Right to Die.

n = 1528; X = 1238; phat=X/n

%phat = 0.8102

[phat - norminv(0.995)*sqrt(phat*(1-phat)/n),...

phat + norminv(0.995)*sqrt(phat*(1-phat)/n)]

%ans = 0.7844 0.8360

L=2*0.01;

n = 4*norminv(0.975)^2*0.8*0.2 /L^2

%n = 6.1463e+003

% Take sample of size 6147

7.19 Exponentials Parameterized by the Scale.

(i) Since EX = λ, the simplest moment matching estimator is λ̂ = X̄ . Since

the variance is λ2, another moment matching estimator would be λ̂=
p

s2 = s,

where s is the sample standard deviation.

The MLE is X̄ . Indeed,

L(λ)=
n

∏

i=1

1

λ
e−

Xi
λ =

1

λn
e−

∑n
i=1

Xi
λ .

By taking natural logs we obtain,

logL(λ)= ℓ(λ)= 0−n log(λ)−
1

λ

n
∑

i=1

X i .

In order to find the λ at which the likelihood L(λ), or equivalently, the log-

likelihood ℓ(λ), is maximized, we take the derivative of ℓ(λ) with respect to λ

and set it equal it to 0,

−
n

λ
+

1

λ2

n
∑

i=1

X i = 0.
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By solving this equation with respect to λ we ultimately obtain that MLE is

λ̂= X̂ .

Note that MLE coincides with the moment matching estimator (correspond-

ing to the first moment).

(ii) Since E(Y1) = λ
2 and E(Y2) = 2λ, many selections of constants w1 and

w2 will make λ̂= w1Y1 +w2Y2 an unbiased estimator, and the solution is not

unique. Indeed, the equation Eλ̂= w1 ·λ/2+w2 ·2λ=λ has a continuum of many

solutions with respect to w1 and w2.

The problem asks for a specific linear combination and a possible choice

could be λ̂=Y1 + Y2
4 ,(w1 = 1,w2 = 1/4). For such a choice of w’s, the variance of

λ̂ is: V ar(λ̂)= 12 · (λ2 )2 + 1
16 · (2λ)2 = λ2

2 .

More generally, if we consider only non-negative weights w1 and w2, any

point from the line segment w1
2 + w2

1/2 = 1 in the first quadrant w1Ow2 will

make the estimator λ̂ unbiased. The variance of such a general estimator is

w2
1(λ2 )2 + w2

2(2λ)2. Replacing w1 = 2− 4w2 (recall w1 and w2 are on the line

segment) and taking the first derivative with respect to w2, we obtain that

minimum variance achieved at w2 = 1/4, which corresponds to our original

choice: w1 = 1 and w2 = 1/4.

Legitimate choices of weights are also w1 = 0,w2 = 1/2 leading to λ̂ = Y2
2 ,

as well as, w1 = 2,w2 = 0 leading to λ̂= 2Y1. What are variances of these two

estimators?

(iii) By simple inspection only p= 1/2 will make the estimator λ̂= pZ1+(1−
p)Z2 unbiased and such an estimator trivially minimizes the (absolute value

of) magnitude of bias. For p= 1/2 the bias of λ is 0.

The variance of λ̂ is

Var (λ̂)= p2(1.1λ)2 + (1− p)2(0.9λ)2.

Taking the derivative with respect to p we conclude that the minimum of vari-

ance is achieved as the solution of equation 2.42p−2(1− p)0.81 = 0. The solu-

tion is: p= 1.62/4.04 = 0.401.

7.20 Bias in Estimator for Exponential λ.

TBA

7.21 Yucatan Miniature Pigs.

The solution is not unique. One can match variance of Beta, ab/((a+ b+

1)(a+b)2) ] to s2 and solve for a assuming that b = a. Result. â= 1/(8s2)−1/2=
2.8711, where s2 is the sample variance of x.

7.22 Computer Games.

TBA

7.23 Effectiveness in Treating Cerebral Vasospasm.
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TBA

7.24 Alcoholism and Blyth-Still Confidence Interval.

TBA

7.25 Spores of Amanita Phalloides.

amanita =[ 9.2, 8.8, 9.1, 10.1,...

8.5, 8.4, 9.3, 8.7,...

9.7, 9.9, 8.4, 8.6,...

8.0, 9.5, 8.8, 8.1,...

8.3, 9.0, 8.2, 8.6,...

9.0, 8.7, 9.1, 9.2,...

7.9, 8.6, 9.0, 9.1];

s2 = var(amanita)

% s2 = 0.3033

n=length(amanita)

% n = 28

[(n-1) * s2/chi2inv(0.95, n-1), (n-1) * s2/chi2inv(0.05, n-1)]

% ans = 0.2042 0.5071

ratint = @(n) chi2inv(0.95, n-1)./chi2inv(0.05, n-1);

ratint(315:320)

%ans = 1.3007 1.3002 1.2996 1.2991 1.2985 1.2980

ratint(317)

% ans = 1.2996

xbar = mean(amanita); s = sqrt(s2); zquant = norminv(0.975);

s/xbar

% ans = 0.0622

Lb = s/xbar - zquant * s/xbar * sqrt( (1/2 + (s/xbar)^2)/(n-1))

% Lb =0.0456

Ub = s/xbar + zquant * s/xbar * sqrt( (1/2 + (s/xbar)^2)/(n-1))

% Ub = 0.0789

[Lb, Ub]

% ans = 0.0456 0.0789

7.26 CLT-Based Confidence Interval for Normal Variance.

TBA
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7.27 Stent Quality Control.

(a) The distribution of X is Binomial with n = 50 and p = 0.01, i.e.,

B in(50,0.01), with the expectation EX = 50 ·0.01 = 0.5, and the variance is

Var X = 50 · 0.01 · 0.99 = 0.495. The standard deviation of X is
p
Var (X ) =p

0.495= 0.70356.

Exceeding the mean plus three standard deviations is critical in the context

of this example. The critical point is: np+3 ·pnpq = 0.5+3 ·0.70356 ≈ 2.61.

Since X is integer-valued, i.e., takes values 0,1,2,3,4, etc., the process might

be problematic when X ≥ 3.

(b) If one uses exact Binomial distribution, the desired probability is P(X ≥
3) = 1−P(X ≤ 2) = 1−P(X = 0)−P(X = 1)−P(X = 2) = 1−

(50
0

)

0.010 ·0.9950 −
(50

1

)

0.011 ·0.9949−
(50

2

)

0.012 ·0.9948 = 1−0.60500−0.30556−0.07562= 0.01382≈
0.014.

If one uses Poisson Approximation to the binomial (recall n is large and p is

small), then λ= np= 0.5 and, P(X ≥ 3)= 1−P(X ≤ 2)= 1−P(X = 0)−P(X = 1)−
P(X = 2)= 1− 0.50

0! e−0.5− 0.51

1! e−0.5− 0.52

2! e−0.5 = 1−0.60653−0.30326−0.07582=
0.01439≈ 0.014.

The normal approximation is possible, as well, but is not very precise be-

cause in this case, X ∼ N (0.5,0.703562). P(X ≥ 3) = P(Z ≥ 3−0.5−1/2
0.70356 ) = P(Z ≥

2.84269) = 1−Φ(2.84) = 0.0023. Such a poor approximation (compared to the

exact value of 0.01381727083060) is expected since normal asymptotics re-

quire the condition: min{np/q,nq/p} > 5.

(c) Since the observation X comes from binomial B in(50, p) distribution

with p unknown, a good estimator is the sample proportion p̂ = X /50. This

estimator is unbiased since, E p̂= EX /50 = 50 · p/50 = p.
The p̂ is moment matching (first moment) and MLE estimator. In MATLAB

data = binornd(20,0.75,[100,1]); % Simulated data, p = 0.75

[phat,pci] = mle(data,’distribution’,’binomial’,...

’alpha’,.05,’ntrials’,20)

7.28 Right to Die.

The margin of error is standardly assumed to be L/2 in the 95% confidence

interval. Since n≥ 4·1.962·0.8·0.2
0.042 = 1536.6, one should sample n= 1537 students.

7.29 Clopper-Pearson and 3/n-Rule Confidence Intervals.

% Clopper-Pearson and 3/n-rule CI’s when X=0

%Hint
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threenrule = @(n,alpha) -log(alpha)./n;

clopper = @(n,alpha) 1-(alpha/2).^(1./n);

n = (10:10:200)’; alpha = 0.05;

[clopper(n,alpha) threenrule(n, alpha)]

7.30 Seventeen Pairs of Rats, Carbon Tetrachloride, and Vitamin B.

% Seventeen Pairs of Rats, Carbon Tetrachloride, and Vitamin B12

%(b)

binopdf(7, 17, 7/17)

% (c)

lb = 7/17 - norminv(0.975) * sqrt( (7/17 * 10/17)/17) %lb=0.1778

ub = 7/17 + norminv(0.975) * sqrt( (7/17 * 10/17)/17) %ub=0.6457

lb1 = 140/340 - norminv(0.975) * sqrt( (140/340 * 200/340)/340 )

%lb1 = 0.3595

ub1 = 140/340 + norminv(0.975) * sqrt( (140/340 * 200/340)/340 )

%ub1 = 0.4641

% (d)

ub - lb %ans =0.4679 too large!

%

n = norminv(0.975)^2/ 0.2^2 %n=96.0365

ssize = ceil(n) %ssize=97

7.31 Hemocytometer Counts.

TBA

7.32 Predicting Alkaline Phosphatase.

TBA

7.1 Additional Problems

7.a1 Bernoulli’s p2. Let X1, X2, . . . , Xn be a sample from Bernoulli Ber(p)

distribution, where parameter p2 is to be estimated. The MLE is δ= (X )2.

(a) What is the bias of δ?

(b) What is the variance of δ?

It is known that X is the MLE for p, where EX = p and V arX = p(1− p)/n.

Thus, (X )2 is the MLE for p2 according to the invariance property of MLEs

(page 235). According to (5.11), with µ= p, σ2 = p(1− p)/n and g(x)= x2,
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Eδ= p2 +1/2 ·2 · p(1− p)/n= p2 + p(1− p)/n,

so the bias is p(1− p)/n.

(b) The variance is (2p)2 · p(1− p)/n= 4p3(1− p)/n.

7.a2 Shrinking X̄ Lowers MSE. Let X1, X2, . . . , Xn be a sample from a

distribution with mean θ and known variance σ2. The standard estimator of

θ, X̄ , has MSE (and variance because X̄ is unbiased) equal to σ2/n.

Show that MSE of λX̄ is minimized by λ∗ = θ2

θ2+σ2/n
< 1. Thus, the shrinkage

estimator λ∗ X̄ lowers MSE which is λ∗σ2/n.

MSE = E(λX̄ −θ)2

= λ2EX̄2 −2λθEX̄ +θ2

= λ2(σ2/n+θ2)−2λθ2 +θ2

as quadratic in λ is minimized for λ∗ = θ2

σ2/n+θ2 .

For the value λ = λ∗ the MSE becomes λ∗σ2/n. Of course, in practice θ is

not known (it is estimated), and “plug-in” shrinker λ̂∗ = X2

σ2/n+X2
is used.





Chapter 8

Bayesian Approach to Inference

8.1 Exponential Lifetimes.

TBA

8.2 Uniform - Pareto.

TBA

8.3 Nylon Fibers.

(a) If T is exponential E (λ) where λ is the rate parameter, then ET = 1/λ.

The moment matching estimator is λ̂mm = 1/T̄.

Here T̄ = 3+13+8
3 = 8, so λ̂mm = 1/8= 0.125.

The likelihood is:

λe−3λ×λe−13λ×λe−8λ = λ3e−24λ.

(b) The posterior for λ is proportional to the likelihood × prior,

λ3e−24λ×λ−1/2 =λ5/2e−24λ = λ7/2−1e−24λ,

which can be recognized as Gamma G a(7/2,24) distribution. Since the mean

of G a(α,β) is α/β, the mean of the posterior is

λ̂B =
7/2

24
= 0.1458,

which is the Bayes estimator, in this case.

(c) TBA

8.4 Gamma – Inverse Gamma.

53
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The likelihood for X ∼ G a
(

n
2 , 1

2θ

)

and the prior θ ∼ IG (α,β) are propor-

tional to

1

(2θ)n/2
exp

{

−
x

2θ

}

, and
1

θα+1
exp

{

−
β

θ

}

,

respectively, if all constant terms are ignored. The product is proportional to

1

θn/2+α+1
exp

{

−
x/2+β

θ

}

,

which can be recognized as the inverse gamma IG
(

n
2 +α, x

2 +β
)

distribution.

8.5 Negative Binomial - Beta.

TBA

8.6 Poisson - Gamma Marginal.

TBA

8.7 Exponential - Improper.

TBA

8.8 Normal Precision – Gamma.

(a) The likelihood is proportional to

L(θ)∝
p
θexp

{

−
θx2

2

}

.

The log-likelohood is

ℓ(θ)=
1

2
logθ−

x2θ

2
+constant,

with first derivative

ℓ′(θ) =
1

2θ
−

x2

2
.

Solution of ℓ′(θ) = 0 is θ̂ = 1
x2 , which represents the candidate for MLE esti-

mator of θ. Since ℓ′′(θ) = − 1
3θ2 < 0, the likelihood is maximized at 1

x2 and θ̂

represents the MLE.

(b) If the prior is θ ∼G a(r,λ), then the posterior is proportional to

π(θ|x) ∝ θr+1/2−1 exp

{

λ+
x2

2

}

,
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which can be recognized as gamma G a(r+1/2,λ+x2/2) distribution. The Bayes

estimator for θ is the mean of posterior,

θ̂B =
r+1/2

λ+ x2/2
=

2r+1

2λ+ x2
.

This Bayes estimator could be represented as a compromise between MLE

and prior mean but with the weights depending on the observation:

θ̂ =
x2

2λ+ x2
×

1

x2
+

2λ

2λ+ x2
×

r

λ
.

Note that in the case when X = 0 the MLE is not defined, but its weight is

0, and the precision is estimated by the prior mean. The representation as

a linear combination of MLE and prior mean with weights free of X is not

possible, although one can represent the Bayes estimator as

1

ω× 1
θ̂mle

+ (1−ω)× 1
θ̂prior

, ω=
1

2r+1
.

(c) When X = −2 is observed, and r = 1/2 and λ = 1, the posterior becomes

gamma with shape parameter 1 and rate parameter 3, which is in fact the

exponential distribution E (3). Indeed,

π(θ|x =−2)∝ θ1/2+1/2−1 exp

{

1+
(−2)2

2

}

= e−3θ.

The Bayes estimator is the mean of the posterior, in this case 1/λ = 1/3. The

equal-tail credible set is found by evaluation quantiles of the posterior. The

p-quantile of exponential distribution, qp, is easy to find by directly solving

an equation involving the cdf: F(qp) = p i.e., 1− e−λpq = p. Thus, the 0.025-

and 0.975-quantiles when λ= 3 are

q0.025 =−
log(1−0.025)

λ
= 0.0084, q0.975 =−

log(1−0.975)

λ
= 1.2296,

which are lower and upper bounds of the equal-tail 95% credible set for θ.
(d) The WinBUGS program approximating estimators from (c) is simple,

model

x ~ dnorm(0, theta)

theta ~ dgamma(0.5, 1)

data

list(x=-2)

inits

list( theta = 1)

The output is
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mean sd MC_error val2.5pc median val97.5pc start sample

theta 0.3326 0.3312 0.001101 0.008439 0.2315 1.217 1001 100000

The MCMC approximation of Bayes’ estimator for θ is 0.3326, quite close

to the exact value of 1/3. Also, the 95% credible set is [0.00844, 1.217], which

is close to the exact set [0.0084, 1.2296].

8.9 Bayes Estimate in a Discrete Case.

TBA

8.10 Histocompatibility.

Gamma Ga(r,µ) distribution for λ has a density

π(λ)=
µr λr−1 exp{−µλ}

Γ(r)
, λ> 0.

Here r = 2 and µ= 1, so π(λ) =λe−λ, since Γ(2) = 1.

The likelihood is Poisson, f (x|λ)= λx

x! exp{−λ}, and since X = 1 is observed, the likelihood

is λe−λ.

The posterior is proportional to the product of the likelihood and prior,

λe−λ×λe−λ =λ2 e−2λ.

From this expression we conclude that the posterior is Gamma Ga(3,2). For any Y ∼
Ga(r,µ), the mean EY is r/µ. Thus, the posterior mean is 3/2=1.5, and this is a Bayes esti-

mator of λ. The posterior variance is 3/22 and posterior standard deviation is
p

3/2= 0.8660.

The supplied WinBUGS program gives the following MCMC approximation to the solu-

tion:

mean sd MC_error val2.5pc median val97.5pc start sample

lambda 1.495 0.863 0.002706 0.3107 1.332 3.609 10001 100000

The median is 1.332 and the 95% credible set for λ is [−0.3107,3.609].

8.11 Neurons Fire in Potter’s Lab 2.

(a) The likelihood is proportional to λ
∑50

i=1 X i exp{−50λ}, where
∑

X i = 989 is

the sum of all counts (total number of firings).

(b) A gamma prior with mean 15 is not unique, for any x, G a(15x,x) is

such a prior. However, the variances depend on x, For example for priors

G a(150,10),G a(15,1), G a(1.5,0.1),G a(0.15,0.01), etc. have variances 1.5, 15,

150, 1500, etc. The variances indicate the degree of certainty of expert that

the prior mean is 15. Large variances correspond to non-informative choices.

Since the sample variance of 50 observations is about 15, it is reasonable to

take prior with larger variance, say G a(3,0.2).

(c) Bayes estimator for λ is w× X̄ + (1−w)×15= where w = xxxx. The MLE

is X̄ and Bayes estimator slightly shrinks toward 0.

(d) The expectation of the lognormal is exp{µ+σ2}. If σ2 = 1 then µ =
log(15)−1/2= 2.2081 gives the expectation 15.
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model
for (i in 1:50)

X[i] ~ dpois(lambda)

lambda ~ dlnorm(2.2081, 1)
#mu = 2.2081, tau =1 => mean 15

DATA
list(X=c(
20, 19, 26, 20, 24, 21, 24, 29, 21, 17,
23, 21, 19, 23, 17, 30, 20, 20, 18, 16,
14, 17, 15, 25, 21, 16, 14, 18, 22, 25,
17, 25, 24, 18, 13, 12, 19, 17, 19, 19,
19, 23, 17, 17, 21, 15, 19, 15, 23, 22))

INITS
list( lambda = 5)

8.12 Eliciting a Beta Prior I.

TBA

8.13 Eliciting a Beta Prior II.

TBA

8.14 Eliciting a Weibull Prior.

TBA

8.15 Bayesian Yucatan Pigs.

model

for (i in 1:nc)

x[i] ~ dbeta(a, a)

a ~ dgamma(0.001, 0.001)

DATA

list(nc=120, x = c(

0.6121, 0.5789, 0.6053, 0.6168, 0.6237, 0.5837, 0.6500, 0.6274,

0.6726, 0.5163, 0.5374, 0.5258, 0.5374, 0.5405, 0.5184, 0.7179,

0.7332, 0.5716, 0.7521, 0.7232, 0.6884, 0.5532, 0.5268, 0.5211,

0.5484, 0.5821, 0.6205, 0.7742, 0.6421, 0.6842, 0.7405, 0.6879,

0.6532, 0.8768, 0.8221, 0.8421, 0.7853, 0.8758, 0.7853, 0.6726,

0.6411, 0.7216, 0.7416, 0.6837, 0.6879, 0.3979, 0.5789, 0.2547,

0.2758, 0.2800, 0.2495, 0.4968, 0.5679, 0.2953, 0.5679, 0.5111,

0.6884, 0.4253, 0.4095, 0.7279, 0.6789, 0.4884, 0.6858, 0.2500,

0.3405, 0.2211, 0.3547, 0.3863, 0.2674, 0.3974, 0.4921, 0.3047,
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0.8495, 0.4668, 0.3832, 0.1616, 0.1137, 0.0479, 0.3347, 0.6700,

0.3168, 0.3232, 0.3711, 0.3437, 0.3021, 0.7853, 0.5000, 0.5711,

0.3984, 0.2211, 0.1479, 0.1026, 0.2737, 0.3632, 0.2279, 0.3184,

0.4321, 0.3805, 0.7626, 0.5111, 0.4316, 0.4705, 0.7974, 0.6926,

0.8200, 0.9589, 0.6000, 0.5684, 0.6489, 0.6311, 0.5032, 0.5032,

0.5779, 0.4774, 0.3074, 0.4995, 0.4384, 0.2942, 0.3132, 0.4205))

INITS

list(a =1)

8.16 Eliciting a Normal Prior.

µ= 3.99382≈ 4, σ= 1.53734.

8.17 Is the Cloning of Humans Moral?

model { anticlons ~ dbin(prob,npolled) ;

anticlons.missing ~ dbin(prob,nmissing)

prob ~ dbeta(1,1)}

Data

list(anticlons=882,npolled= 1000, nmissing=62)

8.18 Poisson Observations with Truncated Normal Rate.

TBA

8.19 Counts of Alpha Particles.

Consult the file rutherford.odc.

8.20 Rayleigh Estimation by Zero-Trick.

TBA

8.21 Predictions in Poisson/Gamma Model.

TBA

8.22 Estimating Chemotherapy Response Rate.

TBA

8.1 Additional Problems

8.a1 Fibrinogen. Fibrinogen is a soluble plasma glycoprotein, synthesized

by the liver, that is converted by thrombin into fibrin during blood coagulation.

Marnie takes blood test and finds that her level of fibrinogen is 207 mg/dL. The



8.1 Additional Problems 59

test results are accurate up to a random error which is normal with mean 0

and standard deviation of 12 mg/dL.

The normal range of fibrinogen is 150-400 mg/dL and Marnie puts a uni-

form prior over this range, dunif(150, 400).

(a) What is the Bayes estimator of the true level of fibrinogen given this

uniform prior?

(b) Report the Inference>Samples>stats output from WinBUGS. What

is the 95% Credible Set for the parameter?

(c) What is the classical 95% CI (Hint: Sample Size = 1, σ known). Compare

Bayesian answers with classical (Compare the parameter estimates and 95%

CI with Bayesian counterparts).

TBA

8.a2 Elicitation of Gamma Prior. You are eliciting Gamma prior on θ,

π(θ)∝ θexp

{

−
θ

β

}

, θ ≥ 0,β> 0.

An expert tells you that the “most probable” value for θ is 2. If you interpret

the “most probable” as the mode of this prior, fully specify the prior.





Chapter 9

Testing Statistical Hypotheses

9.1 Public Health.

TBA

9.2 Testing IQ.

TBA

9.3 Bricks.

%(a)

n = 100; alpha = 0.05; Xbar = 395; s=20; mu0 = 400;

t = (Xbar - mu0)/(s/sqrt(n))

%t = - 2.5

% RR

% H_1: mu < mu0, RR = (-infinity, tinv(alpha, n-1))

tinv(alpha, n-1)

% ans = - 1.6604

% RR = (- infty, -1.6604), statistics t in RR, reject H0

%

% pvalue

p = tcdf(t, n-1)

% p = 0.0070

%(b)

% normal approx

n = 4 * norminv(0.975)^2 * 20^2/4^2

% n = 384.1459 approx 385.

% exact

f = @(n) n - 4 * tinv(0.975, n-1).^2 * 20^2/4^2

fzero(f, 500)

% ans = 386.5689

% n approx 387
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9.4 Soybeans.

p-value= 0.295 is larger than alpha= 0.05 .

t-statistic= -1.058 .

The rejection region cut-point is (+/-) 1.677 .

9.5 Great white shark.

TBA

9.6 Serum Sodium Levels.

[t= 145.55−140

9.455/
p

20
= 2.625104.]

9.7 Weight of Quarters.

Z =−2.17478; p−val = 0.0148

9.8 Dwarf Plants.

p0=0.75; q0=1-p0; n=200;

z = (phat - p0)/sqrt( p0*q0/n)

%z =-2.2862

normcdf(z)

% ans = 0.0111 (p-value against one sided hypothesis)

norminv(0.05)

%ans = -1.6449 (RR=(-infinity, -1.65])

%

lb = phat - norminv(1-0.05/2)*sqrt(phat * (1-phat)/n )

%lb = 0.6154

rb = phat + norminv(1-0.05/2)*sqrt(phat * (1-phat)/n )

%rb =0.7446

model{

X ~ dbin(p, n)

p ~ dbeta(1,1)

probH1 <- step(0.75-p)

probH0 <- 1-probH1

}

DATA

list( n= 200, X = 136)
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INIT

list(p=0)

9.9 Eggs in Nest.

[ X̄ = 4.53,(4.528571),s2 = 1.093, t=−3.745, t69,0.925 ≈ z0.975 = 1.96.]

9.10 Penguins.

X̄ = 44,s = 2.1122, t =−1.7714, p-value=0.0500, t0.05,13 =−1.7709. No deci-

sion at significance level α= 0.05.

9.11 Hypersplenism and White Blood Cell Count.

The solution in MATLAB

n=16; xbar=5213; mu0 = 7200; s=1682; alpha = 0.05;

t = (xbar - mu0)/(s/sqrt(n))

%t = -4.7253

tcdf(t,n-1) %p-value

%ans = 1.3543e-004

tinv(alpha, n-1) %RR bound

%ans = -1.7531

% Find the power against alternative H_1: mu=5800

esizet = abs(7200-5800)/s;

powert = nctcdf( -tinv(1-alpha, n-1), n-1,-esizet*sqrt(n))

% powert = 0.9369

ttgrc%

%power 90%, alpha 5% one sided,

%for the effect size 600/1682 = 0.3567

beta = 0.1;

%Approx sample size

ss = (norminv(1-beta) + norminv(1-alpha))^2/0.3567^2

%sss = 67.3074

%Exact sample size

f = @(n) nctcdf(-tinv(1-alpha, n-1),n-1,-sqrt(n)*0.3567)-(1-beta);

sss = fzero(f,ss)

%%sss = 68.6830

9.12 Jigsaw.
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Sol. (a) [5.783 ± 2.1098 2.784p
18

] = [4.3986,7.1674]. (b) t = 1.1932, t17,0.95 =
1.7396, t< t17,0.95 - Do not Reject.

9.13 Anxiety.

TBA

9.14 Aptitude Test.

TBA

9.15 Rats and Mazes.

xbar = 15.4; mu0 = 15; s=2; mu1 = 15.5;

t = (xbar - mu0)/(s/sqrt(80))

%t = 1.7889

crit = tinv(0.99, 79)

%crit = 2.3745

pval = 1-tcdf(2.3745,79)

%pval = 0.0100

pval = 1-tcdf(1.7889,79)

%pval = 0.0387

pow = normcdf( norminv(0.01) + 0.6*sqrt(80)/s)

%pow = 0.6394

ss = 2^2 * (norminv(0.99) + norminv(0.90))^2/(0.6^2)

%ss = 144.6326

9.16 Hemopexin in DMD Cases I.

TBA

9.17 Retinol and Cooper-deficient Diet.

(a) Since population variance σ2 is not known, we use t-quantiles in the
confidence interval.

xbar = 3.3; s=1.4; n=9; conf=0.95;

alpha = 1 - conf;

int =[xbar - tinv(1-alpha/2,n-1) * s/sqrt(n), ...

xbar + tinv(1-alpha/2,n-1)*s/sqrt(n)]

%int = 2.2239 4.3761

The 95% CI for the unknown mean is [2.2239,4.3761].
(b) We test the hypothesis H0 : µ= 1.6 versus the alternative H1 : µ> 1.6.

xbar = 3.3; s=1.4; n=9; mu0 = 1.6;

t = (xbar - mu0)/(s/sqrt(n))

%t = 3.6429

%RR approach

tinv(1-alpha, n-1)
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%ans = 1.8595

%t=3.6429 > 1.8595, reject H_0

%p-value approach

p = 1-tcdf(t, n-1)

%p = 0.0033

%0.0033 < 0.05 reject H_0

(c) The power of the test is 1−β=Φ

(

zα+ |µ1−µ0|
p

n

σ

)

.

alpha=0.05; mu0=1.6; mu1=2.4; n=9; sigma=1.4;

power = normcdf( norminv(alpha) + abs(mu0 - mu1)*sqrt(n)/sigma)

% or: power = 1-normcdf( norminv(1-alpha) - abs(mu0 - mu1)*sqrt(n)/sigma)

%power = 0.5277

Not much power is achieved with a sample of size n = 9, 1−β≈ 53%. Even

this 53% is an optimistic assessment of the power.
More precise determination of power is done using t-distribution instead of

normal.

alpha=0.05; mu0=1.6; mu1=2.4; n=9; sigma=1.4;

power = 1-nctcdf( tinv(1-alpha, n-1),n-1,abs(mu0-mu1)*sqrt(n)/sigma)

% or power = nctcdf( tinv(alpha, n-1),n-1,-abs(mu0-mu1)*sqrt(n)/sigma)

%power = 0.4693

(d)

n = ( (norminv(0.95) + norminv(0.80))*1.4/(1.6 - 2.1))^2

%n = 48.4712

Sample size necessary for power of 80% is n= 49. If one wants to be precise:

alpha=0.05; mu0=1.6; mu1=2.1; sigma=1.4;

for n=10:100

[n 1-nctcdf( tinv(1-alpha, n-1),n-1,(mu1-mu0)*sqrt(n)/sigma)]

end

% ans = 10.0000 0.2743

% ans = 11.0000 0.2946

% ...

% ans = 49.0000 0.7938

% ans = 50.0000 0.8011

% ans = 51.0000 0.8081

% ans = 52.0000 0.8149

% ...

Thus, sample size needed for power of 80% is n = 50 rather than n = 49 if
one uses exact calculations. More elegant solution is
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f = @(n) 1-nctcdf( tinv(1-alpha, n-1),n-1,(mu1-mu0)*sqrt(n)/sigma) - 0.8

fzero(f, 100) %49.8523

If the two-sided alternative is selected, H1 : µ 6= 1.6, then the p-value in 1.2

is p= 0.0066. The power in 1.3 is only about 40%.

alpha=0.05; mu0=1.6; mu1=2.4; n=9; sigma=1.4;

power = normcdf( norminv(alpha/2) + abs(mu0 - mu1)*sqrt(n)/sigma)

% power =0.4030

Also, for the two sided alternative the sample size is approximately n= 62.

n = ( (norminv(0.975) + norminv(0.80))*1.4/(1.6 - 2.1))^2 %

%n = 61.5352

(e)

model{

precxbar <- n * precx

xbar ~ dnorm( mu, precxbar )

mu ~ dnorm(0, 0.0001)

#s = 1.4, s^2 = 1.96, prec = 1/1.96 =0.51

#X gamma(a,b) -> EX=a/b, Var X = a/b^2

precx ~ dgamma( 0.00051, 0.001 )

indh1 <- step(mu - 1.6)

sigx <- 1/sqrt(precx)

}

list( xbar = 3.3, n=9 )

list( mu = 1, precx = 1 )

9.18 Aniline.

TBA

9.19 DNA Random Walks.

(a) The sample size is calculated as n=
(

z1−α/2+z1−β
e

)2
, or in MATLAB for the

specified α,1−β, em], and two-sided alternative, as

n = (0.03/0.02)^2 * (norminv(0.975) + norminv(0.9))^2 %n=23.6417

This n is to be rounded to larger integer, here n= 24, and sampling is to follow.

The exact prospective power for n= 24 observations is

pow = normcdf( -norminv(0.975) + 0.02/(0.03/sqrt(24)) )

%pow = 0.9042

%

tstat = (mean(H) - 0.6)/(std(H)/sqrt(24))

% tstat = -1.3938
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%pvalue

2*tcdf(tstat,n-1)

% 0.1767

% p-value > 5% -- do not reject H_0

%Rejection region

%(-infinity, tinv(0.025, 24-1)] U [tinv(0.975, 24-1),infinity)

tinv(0.025,n-1) %-2.0687

tinv(0.975,n-1) % 2.0687

%(-infinity, -2.0687] U [2.0687, infinity)

%(b) Because of symmetry of t-distribution, there are several

% equivalent ways of getting the retrospective power.

% It is found to be 89.28%

pow = nctcdf( -tinv(1-alpha/2, n-1), n-1,(mu1-mu0)*sqrt(n)/s) + ...

1 - nctcdf( tinv(1-alpha/2, n-1), n-1,(mu1-mu0)*sqrt(n)/s)

% 0.8928

pow2 = nctcdf( tinv(alpha/2, n-1), n-1,-abs(mu1-mu0)*sqrt(n)/s) + ...

1- nctcdf(-tinv(alpha/2, n-1), n-1, -abs(mu0-mu1)*sqrt(n)/s)

% 0.8928

pow = nctcdf( -tinv(1-alpha/2, n-1), n-1,(mu1-mu0)*sqrt(n)/s) + ...

+nctcdf(-tinv(1-alpha/2, n-1), n-1,(mu0-mu1)*sqrt(n)/s)

% 0.8928

pow = nctcdf( tinv(alpha/2, n-1), n-1,(mu1-mu0)*sqrt(n)/s) + ...

+nctcdf(tinv(alpha/2, n-1), n-1,(mu0-mu1)*sqrt(n)/s)

% 0.8928

pow = nctcdf( -tinv(1-alpha/2, n-1), n-1,(mu1-mu0)*sqrt(n)/s) + ...

+nctcdf(-tinv(1-alpha/2, n-1), n-1,(mu0-mu1)*sqrt(n)/s)

% 0.8928

pow = nctcdf( tinv(alpha/2, n-1), n-1,-abs(mu1-mu0)*sqrt(n)/s) + ...

+nctcdf(tinv(alpha/2, n-1), n-1, abs(mu0-mu1)*sqrt(n)/s)

% 0.8928

9.20 Binding of Propofol.

(a)

pbar = 0.93; s=0.12; n=87; p0 = 0.96;

t = (pbar - p0)/(s/sqrt(n))

%t = -2.3318

tinv(0.05, n-1)

%ans = -1.6628

tinv(0.01, n-1)

%ans = -2.3705

pval= tcdf(-2.3318, n-1)

%pval = 0.0110
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From the above calculations we see that H0 is rejected at 5% significance

level since t ∈ (−∞,−1.6628]. The H0 is not rejected at α= 1% since t=−2.3318

does not fall in rejection region (−∞,−2.3705].

This is confirmed by looking at p-value. P-value of 0.0110 is smaller than

5% but larger than 1%.

(b) Normal approximation can be used because of Central Limit Theorem.

In fact n= 87 proportions are averaged. In this case, H0 is rejected even at 1%

level since p-value is 0.0099.

norminv(0.05)

%ans = -1.6449

norminv(0.01)

%ans = -2.3263

pval = normcdf(-2.3318)

%pval = 0.0099

9.21 Improvement of Surgical Procedure.

TBA

9.22 Cancer Therapy.

%(a) H0 p = 0.4 vs H1: p > 0.4

%(b)

norminv(1-0.05) %1.6449; since z is in [1.6449, infinity)

% H0 rejected

%(c)

pval = 1 - normcdf(1.7321) %0.0416 < 0.05, H0 rejected

%(d) see text page 339

p1 = 0.475;

n = p0*(1-p0)*(norminv(1-0.05) + norminv(0.85)*sqrt(p1*(1-p1)/(p0*(1-p0))) )^2/(p0-p1)^2

%n=311.3479 approx 312

3.23 Is the Cloning of Humans Moral?

clear all

n=1000; phat = 0.88;

p0=0.9; q0=1-p0;

Z = (phat - p0)/sqrt(p0 * q0/n)

%Z = -2.1082

crit = norminv(0.975)
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%crit = 1.9600

% The rejection region is (-infinity, -1.96) U (1.96, infinity)

% and Z=-2.1082 falls in. Reject H_0.

pval = 2*normcdf(-2.1028)

% pval = 0.0355

% pval < 0.05 = alpha => Reject H_0.

n=1000; phat = 0.88; qhat=1-phat;

[phat - norminv(0.975)*sqrt(phat*qhat/n) ...

phat + norminv(0.975)*sqrt(phat*qhat/n)]

% ans = 0.8599 0.9001

% 0.9 belongs to CI (tight!)

Recall that the power is 1−β=Φ

[√

p0q0

p1q1

(

zα/2 + |p0−p1|
p

np
p0q0

)]

.

normcdf( sqrt( 0.9*0.1/(0.85*0.15)) * (norminv(0.025) +...

abs(0.9-0.85)*sqrt(1000)/sqrt(0.9*0.1)) )

%ans = 0.9973

9.24 Smoking Illegal?

TBA

9.25 DNA of Spider Monkey.

TBA





Chapter 10

Two Samples

10.1 Testing Piaget.

TBA

10.2 Smoking and COPD.

We test hypotheses

H0 : µ1 =µ2 versus H1 : µ1 <µ2, that is H1 : µ1 −µ2 < 0.

Since the population variances are assumed equal we first find pooled stan-

dard deviation,

sp =

√

(9−1) ·7,0292 + (11−1) ·7,5342

9+11−2
=

√

53,492,572 ≈ 7,313.86.

Then,

t=
X̄1 − X̄2

sp

√

1/n1 +1/n2

=
16,156−24,672

7,313.86
p

1/9+1/11
=−2.59.

The proper Rejection Region cut-point is tinv(0.05, 18), since the statis-

tic t has 11 + 9 − 2 = 18 degrees of freedom, and the rejection region is

RR = (−∞,−1.7341]. The statistic t falls in the RR and H0 is rejected at the

level α = 0.05. This agrees with the p-value approach since the p-value is

tcdf(-2.59, 18)=0.0092 < 0.05.

10.3 Noradrenergic Activity.

(a)

x1bar = 279; x2bar = 198;

s1 = 122; s2 = 89; n1=17; n2 = 29;

71
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t1 = (x1bar - 170)/(s1/sqrt(n1))

% t1 = 3.6838

pval1 = 1 - tcdf( t1, n1-1)

% pval1 = 0.0010

t2 = (x2bar - 170)/(s2/sqrt(n2))

% t2 = 1.6942

pval2 = 1 - tcdf( t2, n2-1)

% pval2 = 0.0507

Thus, H′
0 is rejected (p-value 0.001) while H′′

0 is not rejected at 5% level

(p-value = 0.0507).
(b)

s1 = 122; s2 = 89; n1=17; n2 = 29;

f = (s1^2)/(s2^2)

% f = 1.8791

pval = 2 * (1 - fcdf( 1.8791, n1-1, n2-1))

% pval = 0.1397

Hypothesis H0 : σ2
1 = σ2

2 is not rejected, p-value is 0.1397. Thus, in testing

equality of the means one should use pooled sample standard deviation.
(c)

x1bar = 279; x2bar = 198;

s1 = 122; s2 = 89; n1=17; n2 = 29;

%pooled

sp = sqrt( ((n1-1)*s1^2 + (n2-1)*s2^2 )/(n1 + n2 - 2 ))

% sp = 102.2399; should be between s1 and s2.

t = (x1bar - x2bar)/(sp * sqrt(1/n1 + 1/n2) )

% t = 2.5936

pval = 1-tcdf( t, n1+n2 -2) %alternative mu-nu>0

% pval = 0.0064

pval = 2*tcdf( -abs(t), n1+n2 -2) %alternative mu-nu diff 0

% pval = 0.0128

10.4 Testing Variances.

(a)

2 * min( fcdf(f,n1-1, n2-1), 1- fcdf(f, n1-1, n2-1) )

%ans = 0.9727

(b) The problem is in the condition F > 1. The universally correct p value

is obtained if the condition F > 1 is replaced by F > median(Fn1−1,n2−1). The

medians of F-distributions are generally close to 1, but range between 0.4549

and 2.1981, and all F statistics observed in this range may potentially lead to

a wrong two-sided p-value.
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%Observed value of F is

f = var(x)/var(y)

% f = 1.0429

%The criteria F > 1 suggest p-value

2 * (1 - fcdf(f,n1-1, n2-1))

% 1.0273 > 1

%The problem is that F < median(F(n1-1, n2-1))

med = finv(0.5, n1-1, n2 -1)

%med = 1.0687 > F > 1,

%and 2 * fcdf(f,n2-1, n1-1) should be used

10.5 Mating Calls.

TBA

10.6 Fatigue.

TBA

10.7 Mosaic Virus.

TBA

10.8 Dopamine β-hydroxylase Activity.

(a1) Solution when σ1 =σ2 is assumed. Polled sample variance is s2
p = ((n1−

1)×s2
1+(n2−1)×s2

2)/(n1+n2−2)= ((9−1)×s2
1+(12−1)×s2

2)/(9+12−2)= 55.8399.

The polled sample standard deviation is sp =
√

s2
p = 7.4726.

Statistic: t= X̄1−X̄2

sp

p
1/n1+1/n2

= 4.3/(7.4726×
p

1/9+1/12)= 1.3050.

The critical value is: tn1+n2−2,α = t19,0.05 = 1.7291.

Rejection Region is [1.7291,∞).
MATLAB code for p-value is

ssize = (s1^2 + s2^2)*(norminv(0.95)+norminv(0.9))^2/(0.005^2)

% ssize = 17.8128 approx 18 each

1 - tcdf(1.3050, 19)

% ans = 0.1037

(b1) 99% CI for µ1 −µ2 is: [4.3−7.4726×
p

1/9+1/12×2.8609,4.3+7.4726×p
1/9+1/12×2.8609]= [−5.127013.7270]. Here t19,0.005 = 2.8609.

ssize = (s1^2 + s2^2)*(norminv(0.95)+norminv(0.9))^2/(0.005^2)

% ssize = 17.8128 approx 18 each

tinv(0.995, 19)

% ans = 2.8609

(a2) Solution when no assumption about σ’s is made. Statistic is t= X̄1−X̄2
√

s2
1/n1+s2

2/n2

=

4.3/
p

8.162/9+6.932/12 = 1.2735.

This statistic has approximately ∆ degrees of freedom,
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∆=
[(s2

1/n1)+ (s2
2/n2)]2

(s2
1/n1)2

n1−1 + (s2
2/n2)2

n2−1

nasty!
⊙⊙
⌢

∆= (8.162/9+6.932/12)2/((8.162/9)2/8+(6.932/12)2/11)= 15.6627 By round-

ing to the smaller integer, we get df = 15. (integer taken because of tables)
t15,0.05 = 1.7531, although in principle it is possible to find t15.6627,0.05.

ssize = (s1^2 + s2^2)*(norminv(0.95)+norminv(0.9))^2/(0.005^2)

% ssize = 17.8128 approx 18 each

tinv(0.95, 15.6627)

%ans = 1.7482

Rejection region is [1.7487,∞). Since t = −1.2050 > −1.7487, do not reject

H0.

(b2) 99% CI for µ1−µ2 is: [−4.3−2.9309×
p

8.162/9+6.932/9,−4.3+2.9309×p
8.162/9+6.932/9]= [,]. Here t15.5911,0.995 = 2.9309.

model{

for(i in 1:2) {

xbar[i] ~ dnorm(mu[i], precxbar[i])

mu[i] ~ dnorm(0, 0.00001)

n1[i] <- n[i]-1

ch[i] ~ dchisqr(n1[i])

precx[i] <- ch[i]/(n1[i] * s[i] * s[i])

precxbar[i] <- n1[i] * precx[i]

sigma[i] <- 1/sqrt(precx[i]) }

teststat <- mu[1]-mu[2]

test <- step(teststat)

}

DATA

list( n = c(9, 12), xbar=c(39.8, 35.5), s=c(8.16, 6.93) )

INITS

list(mu=c(0,0), ch=c(1,1))

mean sd MC error val2.5pc median val97.5pc start sample

mu[1] 39.79 3.339 0.009841 33.1 39.79 46.43 1001 100000

mu[2] 35.48 2.323 0.007239 30.86 35.48 40.11 1001 100000

sigma[1] 9.036 2.646 0.009805 5.508 8.525 15.58 1001 100000

sigma[2] 7.463 1.795 0.006236 4.901 7.16 11.81 1001 100000

test 0.8653 0.3414 0.001074 0.0 1.0 1.0 1001 100000

teststat 4.309 4.061 0.012 -3.723 4.304 12.37 1001 100000

10.9 5-HIAA Levels.
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Patients =[263 288 432 890 ...

450 1270 220 350 ...

283 274 580 285 ...

524 135 500 120];

Controls =[60 119 153 588 ...

124 196 14 23 ...

43 854 400 73];

xbar1 = mean(Patients) %429

xbar2 = mean(Controls) %220.5833

s1 = std(Patients) %294.6718

s2 = std(Controls) %261.8190

n1= length(Patients) %16

n2 = length(Controls) %12

sp = sqrt( ((n1-1)*s1^2 + (n2-1)*s2^2)/(n1+n2-2)) %281.2413

%=================

t = (xbar1 - xbar2)/(sp * sqrt(1/n1 + 1/n2)) %1.9406

%(a) H0: mu1 = mu2 vs H1: mu1 ~= mu2 (two-sided alternative)

%RejRegion

tinv(1-0.05/2, n1 + n2 -2) %2.0555, 1.9406 is not in RR=[2.0555, inf)

%H0 not rejected

%p-value

pval = 2 * tcdf(-abs(t), n1 + n2 - 2) %0.0632 > 0.05, H0 not rejected

%Note: If the alternative were onesided H1: mu1 > mu2, then

%pval = 1-tcdf(t, n1 + n2 - 2) = 0.0316 < 0.05, and one would reject H0

%(b)

[xbar1 - xbar2 - sp*sqrt(1/n1 + 1/n2) * tinv(1-0.05/2, n1 + n2 -2) ...

xbar1 - xbar2 + sp*sqrt(1/n1 + 1/n2) * tinv(1-0.05/2, n1 + n2 -2)]

% -12.3488 429.1821

10.10 Stress, Diet and Acids.

The WinBUGS solution is given below

model{

for (i in 1:n){

plasma[i] ~ dnorm(mu[smo[i]], prec[smo[i]] )

}

for ( j in 1:2) {

mu[j] ~ dnorm(0, 0.0001)

prec[j] ~ dgamma(0.0001, 0.0001)

}

difmu <- mu[1] - mu[2]

testmu <- step( mu[1] - mu[2] ) #1 if mu[1]>mu[2]

r <- prec[2]/prec[1] #var1/var2

}
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DATA

list(n=32, plasma = c(0.97, 0.72, 1.00, 0.81, 0.62, 1.32, 1.24, 0.99,

0.90,0.74, 0.88, 0.94, 1.06, 0.86, 0.85, 0.58, 0.57,

0.64,0.98,1.09, 0.92, 0.78, 1.24, 1.18, 0.48, 0.71,

0.98, 0.68, 1.18, 1.36, 0.78, 1.64),

smo=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2))

INITS

list( mu = c(0,0), prec=c(1,1) )

mean sd MC error val2.5pc median val97.5pc start sample

difmu -0.06288 0.1703 5.17E-4 -0.4106 -0.06287 0.2773 1001 100000

r 0.3162 0.2047 7.466E-4 0.06502 0.2699 0.8396 1001 100000

testmu 0.3393 0.4735 0.001388 0.0 0.0 1.0 1001 100000

Notice that testmu will be posterior proportion of how many times mu1

- mu2 is positive. Thus, the MCMC estimate of posterior probability of hy-

pothesis H1 that states µ1 < µ2 is 1 - 0.3393 = 0.6607. Note that the ratio if

variances has a 95% credible set fully below 1. This is a Bayesian two-sided

test for equality of variances and the conclusion is that the variances are not

equal.
For comparison, a MATLAB session conducting a classical t test is provided

nonsmo = [0.97 0.72 1.00 0.81 0.62 1.32 1.24 0.99 ...

0.90 0.74 0.88 0.94 1.06 0.86 0.85 0.58 0.57...

0.64 0.98 1.09 0.92 0.78 1.14 1.18];

smo = [ 0.48 0.81 0.98 0.68 1.18 1.36 0.78 1.64];

%test hypothesis that the plasma ascorbic acid level for

%nonsmokers is smaller than that of smokers. Use alpha=0.05.

X1bar = mean(nonsmo); s1 = std(nonsmo); n1 = length(nonsmo);

X2bar = mean(smo); s2 = std(smo); n2= length(smo);

%s1 = 0.2104, s2 = 0.3915; we check for equality of variances

F = s1^2/s2^2 %0.28888 is smaller than 1

pval1 = 2*fcdf(F, n1-1, n2 -1)

% pval1 =0.0223 < 5% and we will not assume equality

% of variances in comparing the two means.

% The Welch-Satterwhite df for the t test is:

ndf = (s1^2/n1 + s2^2/n2 )^2 /( (s1^2 /n1)^2/(n1-1) + ...

(s2^2/n2)^2 /(n2-1) )

t = (X1bar - X2bar)/sqrt( s1^2/n1 + s2^2/n2 )

pval = tcdf(t,ndf)

% ndf = 8.3892; t =-0.4457; pval = 0.3336

% the mean mu1 is not significantly smaller

% than the mean mu2 at the significance level 5%

10.11 A. pantherina and A. rubescens.
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(a) s2
p = (s2

1(m−1)+ s2
2(n−1))/(m+n−2)= (2.122∗11+1.942∗14)/(11+14)=

4.0852 is pooled sample variance, and sp = 2.0212 is pooled sample standard

deviation.

Also,
p

1/12+1/15 = 0.3873.

The test statistic t = X̄1−X̄2

sp

p
1/n+1/m

= −1.2/2.02/0.3873 = −1.5338. In the two

sided test, the critical value at α= 0.05 is tm+n−2,1−α/2 = t25,0.975 = 2.060, and

the hypothesis H0 is not rejected, since |t| < 2.060.

(b) z0.90 = 1.2816 and z0.975 = 1.96 and the group sample size should be

2/0.52 ·(1.96+1.2816)2 = 84.0638≤ 85. To achieve desired power and detect the

deviation of d = 0.5, independent samples of m = 85 and n = 85 spores of A.

pantherina (“Panther") and A. rubescens (“Blusher") should be taken.

10.12 Blood Volume in Infants.

%Blood Volume in Infants

%X1 = early clamping measurements

X1 =[13.8 8.0 8.4 8.8 9.6 9.8 8.2 8.0 ...

10.3 8.5 11.5 8.2 8.9 9.4 10.3 12.6];

%X2 = late clamping measurements

X2=[10.4 13.1 11.4 9.0 11.9 16.2 14.0 8.2 ...

13.0 8.8 14.9 12.2 11.2 13.9 13.4 11.9];

X1bar = mean(X1) %9.6438

X2bar = mean(X2) %12.0938

s1 = std(X1) %1.7146

s2 = std(X2) %2.2359

n1 = 16; n2 = 16;

sp = sqrt( ((n1-1)*s1^2 + (n2-1)*s2^2 )/(n1 + n2 - 2) ) %1.9924

t = (X1bar - X2bar)/(sp * sqrt(1/n1 + 1/n2)) %-3.4781

p = 2 * tcdf(-abs(t), n1 + n2 - 2) %0.0016

The mean volumes of blood in infants are significantly different for early

(population 1) and late (population 2) clamping of the umbilical cord.

10.13 Biofeedback.

(a) H0 : µ1 =µ2 versus H1 : µ1 >µ2 or in terms of differences, H0 :µ1−µ2 = 0

versus H1 : µ1 −µ2 > 0.

(b) To follow the alternative H1 the differences d1 should be taken as

X1i − X2i Here, di = {7,21,17,−3,11}, d̄ = 10.6,sd = 9.32, t = 10.6/(9.32/
p

5) =
2.54, t4,0.95 = 2.131847.

(c) Variances are the same, normal distributions.

10.14 Hypertension.
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(a)

% first group

n1 = 15; X1bar = 16.16; s1 = 4.29;

% second group

n2 = 16; X2bar = 10.53; s2 = 3.33;

% population variances assumed the same, need s_p

sp2 = ((n1 -1)* s1^2 + (n2-1) * s2^2)/(n1 + n2 - 2);

sp = sqrt(sp2) % sp = 3.8237

tstat = (X2bar - X1bar)/(sp * sqrt(1/n1 + 1/n2))

% tstat = -4.0969

%TEST two sided H_1 rejection region method

alpha = 0.05;

tcrit = tinv(1-alpha/2, n1 + n2 - 2)%tcrit = 2.0452

%and the rejection region RR is

%RR =(-inf, -tcrit)U(tcrit, inf)=

% (-inf, -2.0452)U(2.0452, inf).

%Reject H_0 since tstat falls in the RR.

%TEST using p-values

pval = 2 * tcdf(-abs(tstat), n1 + n2 - 2)

% pval = 3.0733e-004

% which is the same as 2*tcdf(tstat, n1+n2-2)

% since tstat < 0.

% Reject H_0 since pval = 0.0003 < 0.05 = alpha.

(b) The power is

Φ





−z1−α/2+
∆

√

σ2
1/n1 +σ2

2/n2





 ,

with ∆= 3,α= 0.05, and σ2
1,σ2

2 replaced by s2
1 = 4.292 and s2

2 = 3.332.

Delta = 3;

pow = normcdf( -norminv(1 - alpha/2) + ...

Delta/( sqrt(s1^2/n1 + s2^2/n2) ) )

% pow = 0.5813

(c) The sample size is

n=
(σ2

1 +σ2
2)(z1−α/2+ z1−β)2

∆2
,

with ∆= 3,α= 0.05,β= 0.01 and σ2
1,σ2

2 replaced by s2
1 = 4.292 and s2

2 = 3.332.

beta = 0.01;

n = (s1^2 + s2^2)*(norminv(1-alpha/2) + ...

norminv(1-beta))^2 /Delta^2

% n = 60.2066, thus, take n1=n2=61.
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10.15 Hemopexin in DMD Cases II.

TBA

10.16 Risk of Stroke.

TBA

10.17 Cell Counts.

%Exercise Cell Counts

A20 =[34 44 40 62 53 51 30 33 38 51 26 48];

M20 =[30 43 34 53 49 39 37 42 30 50 35 54];

A70 =[72 82 100 94 83 94 73 87 107 102];

M70 =[76 51 92 77 74 81 72 87 100 104];

n1 = length(A20); n2 = length(A70);

md20 = mean(A20-M20)

sd20=std(A20-M20)

md70 = mean(A70-M70)

sd70=std(A70-M70)

%(a)

t1 = md20/(sd20/sqrt(n1)) %0.5520

t2 = md70/(sd70/sqrt(n2)) %2.4072

pval1=2 * tcdf(-abs(t1), n1-1) %0.5920

pval2=2 * tcdf(-abs(t2), n2-1) %0.0394

%(b)

[md20 - tinv(0.975, n1-1)*sd20/sqrt(n1) ...

md20 + tinv(0.975, n1-1)*sd20/sqrt(n1)]

%-3.4853 5.8186

[md70 - tinv(0.975, n2-1)*sd70/sqrt(n2) ...

md70 + tinv(0.975, n2-1)*sd70/sqrt(n2)]

%%0.4821 15.5179

%(c)

var2p = ((n1-1)*sd20^2 + (n2-1)*sd70^2)/(n1 + n2 -2)

t0 = (md20 - md70)/sqrt(var2p * (1/n1 + 1/n2))

pval= 2 * tcdf(-abs(t0), n1 + n2 -2 )

% -1.7935 pval = 0.0880 not significant

Thanks to Professor Carlos E. Fernández-Ossa from School of Engineering

of Antioquia, Columbia, for pointing out typos in the original MATLAB code

for (b) and (c), leading to wrong results.

10.18 Impulses from Crayfish.

TBA
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10.19 Aerobic Capacity.

x1bar = 46.3; x2bar = 38.0; s1 = 5; s2 = 5.2; n1 = 20; n2 = 10; sp = sqrt( ((n1

-1 )*s12 + (n2-1)*s22 )/(n1 + n2 - 2)) t = (x1bar - x2bar)/(sp * sqrt(1/n1 + 1/n2))

tinv(0.95, n1 + n2 - 2) pval = 1 - tcdf(t, n1 + n2 - 2)

sigma = 5; alpha = 0.05; beta = 0.1; delta = 4;

n = 2 * sigma2/delta2 * (norminv(1-alpha) + norminv(1-beta))2

10.20 Cataract and Diabetes.

[rd rdl rdu rr rrl rru or orl oru] = risk(56, 84, 552, 1927)

% rd = 0.1773 [ 0.0945, 0.2601]

% rr =1.7964 [1.4477, 2.2290]

% or =2.3273 [1.6382, 3.3063]

10.21 Beginnings of Antiseptic Surgeries.

TBA

10.22 Reaction Times.

%%

rg = [...

18 22;...

16 20;...

23 29;...

30 35;...

32 27;...

30 29;...

31 33;...

25 29;...

27 31;...

21 24];

d = rg(:,1) - rg(:,2);

sd = std(d);

n = length(d);

t = mean(d)/( sd/sqrt(n))

p = 2 * tcdf( - abs(t), n-1)

tcrit = tinv(0.975, n-1)

%(-inf, -tcrit) U (tcrtit, inf)

% t = -2.5122

% p =0.0332
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% tcrit =2.2622

10.23 Gamma Globulin and Aspirin.

TBA

10.24 High/Low Protein Diet in Rats.

% High/Low Protein in Rats

X1=[134 146 104 119 124 161 107 83 113 129 97 123];

X2=[70 118 101 85 107 132 94];

X1bar = mean(X1); %X1bar = 120

s1 = std(X1); %s1=21.3882

n1 = length(X1); %n1 = 12

X2bar = mean(X2); %X2bar = 101

s2 = std(X2); %s2 = 20.6236

n2= length(X2); %n2=7

%=========================

F = s2^2/s1^2 %F = 0.9298

pval1 = 2*fcdf(F, n2-1, n1 -1) %pval1 =0.9788

% decide sigma_1^2 = sigma_2^2 test by

% pooled standard deviation

sp = sqrt( ( (n1-1)*s1^2 + (n2-1)*s2^2)/(n1 + n2 - 2) )

%sp =21.1215

t = (X1bar - X2bar)/(sp * sqrt(1/n1 + 1/n2)) %t=1.8914

%

pval = 1-tcdf(t, n1 + n2 -2) %pval=0.0379

%

tcrit = tinv(0.95, n1 + n2 - 2) %tcrit=1.7396

n = (450 + 450)*(norminv(0.95) + norminv(0.95))^2 / 20^2

%n =24.3499

ssize = ceil(n) %ssize=25

10.25 Spider Monkey DNA.

TBA

10.26 PBSC versus BM for Unrelated Donor Allogeneic Transplants.

TBA

10.27 Hydrogels.

% Hydrogels

data =[...

20250 44250;...

51000 126000;...

77250 100500;...

39000 58500;...
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40500 69750;...

42750 76500;...

78750 155250;...

42750 67500];

minutes30 = data(1:4,1)./data(1:4,2)

minutes60 = data(5:8,1)./data(5:8,2)

%minutes30 = 0.4576 0.4048 0.7687 0.6667

%minutes60 = 0.5806 0.5588 0.5072 0.6333

n1 = 4; n2 = 4;

xbar1 = mean(minutes30) %0.5744

xbar2 = mean(minutes60) %0.5700

alpha = 0.05;

s1 = std(minutes30) %0.1719

s2 = std(minutes60) %0.0522

sp = sqrt( ((n1-1)*s1^2 + (n2-1)*s2^2)/(n1 + n2 - 2)) %0.1270

[xbar1-xbar2 - tinv(1-alpha, n1+n2-2)*sp*sqrt(1/n1+1/n2),...

xbar1-xbar2 + tinv(1-alpha, n1+n2-2)*sp*sqrt(1/n1+1/n2)]

% -0.1702 0.1790

Since Westlake’s interval [−0.1702,0.1790] is not contained in the interval

[−0.1,0.1] the hypothesis of equivalence cannot be established. It is interest-

ing that H0 : µ1 = µ2 is not rejected (p-value against one sided alternative

is 0.48), yet the equivalence cannot be established with specified equivalence

margins and significance level α. The sample sizes n1 = n2 = 4 are quite small

to establish equivalence with the equivalence margins θU = −θL = 0.1 If the

equivalence margins were θU = −θL = 0.2, the equivalence would be estab-

lished.

10.1 Additional Problems

10.a1 Tactile Sensation in Rats. Researchers in Garrett Stanley’s Lab

are interested in understanding how the brain processes the sense of touch,

and use the rat whisker system as a model for tactile sensation. In this par-

ticular experiment, the researchers were testing the ability of subject rats to

detect very weak deflections of their whiskers resulting from a short (150ms)

puff of air. Much as a person might remain very still when trying to listen for

a faint sound, it was hypothesized that the animals would be more likely to

succeed in the task when they held their whiskers still in anticipation of the

arrival of the stimulus. To test this, the researchers recorded high speed video

of the whiskers for a short interval prior to the stimulus. After recording a

total of 57 trials, the researchers examined the video and separated the trials

into two categories: those in which the whiskers were still prior to the ar-

rival of the stimulus (n1 = 43), and those on which the whiskers were moving
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(n2 = 14). The animals correctly detected the stimulus 23 times under the first

condition ( p̂1 = 53.49% correct), and only 3 times under the second condition

( p̂2 = 21.43%).

(a) Test hypothesis for equality of proportions using normal approximation

to the binomial. Argue that the sample size is small for the central limit the-

orem to hold (Hint: For applicability of normal approximation usual require-

ment is min{n1,n2}p(1− p) > 5 for p= (n1 p̂1 +n2 p̂2)/(n1 +n2).) (b) Using Win-

BUGS, test the hypothesis in (a) using beta Be(1/2,1/2) prior on the unknown

proportions p1 and p2. Note that the choice (1/2,1/2) for the hyperparameters

of Beta is Jeffreys noninformative prior.

model{

X1 ~ dbin( p1, n1 )

X2 ~ dbin( p2, n2 )

p1 ~ dbeta(0.5, 0.5)

p2 ~ dbeta(0.5, 0.5)

diff <- p1 - p2

pH1 <- step(diff)

}

DATA

list( X1 = 23, X2 = 3, n1 = 43, n2 = 14)

INITS

list(p1=0.5, p2 = 0.5)

mean sd MC error val2.5pc median val97.5pc start sample

diff 0.301 0.1293 4.182E-4 0.02776 0.3087 0.5317 1001 100000

pH1 0.9836 0.127 4.333E-4 1.0 1.0 1.0 1001 100000

10.a2 Clinical Trial of Abatacept. Abatacept is a drug proposed to treat

and prevent active lupus flares in at least one of three organ systems: the

skin, the heart, the lung, or four joints. If, in a double blind trial 33 out of 115

people treated with Abatacept showed cumulative damage due to Systemic

Lupus Erythematosus (SLE Score ≥ 1), and 17 out of 55 people in the placebo

arm also showed cumulative damage due to SLE, is Abatacept more effective

than the placebo? Use a significance level of 0.05.

(a) Answer the above question using risk differences. What is the 99% CI

for the risk difference?

(b) Answer the above question using the odds ratio. What is the 95% CI for

the odds ratio?





Chapter 11

ANOVA and Elements of Statistical Design

11. 1 Nematodes.

TBA

11.2 Cell Folate Levels in Cardiac Bypass Surgery.

TBA

11.3 Computer Games.

TBA

11.4 MTHFR C677T Genotype and Levels of Homocysteine and Folate.

TBA

11.5 Beetles.

TBA

11.6 ANOVA Table from Summary Statistics.

TBA

11.7 Protein Content in Milk for Three Diets.

(a)

’Source’ ’SS’ ’df’ ’MS’ ’F’ ’Prob>F’

’Groups’ [0.7470] [ 2] [0.3735] [5.6118] [0.0053]

’Error’ [5.0585] [76] [0.0666]

’Total’ [5.8056] [78]

(b) The hypothesis here is that the diets don not differ in protein yield, that

is

H0 : µ1 =µ2 =µ2 vs.H1 : not H0.

H0 is rejected since the p-value is less than 5%.

85
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(c) µ1 −µ2 ∈ (−0.0579,0.2844)⇒ µ1 =µ2.

µ1 −µ3 ∈ (0.0684,0.4107)⇒ µ1 >µ3.

µ2 −µ3 ∈ (−0.0416,0.2941)⇒ µ2 =µ3.

11.8 Tasmanian Clouds.

TBA

11.9 Clover Varieties.

TBA

11.10 Cochlear Implants.

TBA

11.11 Bees.

TBA

11.12 SiRstv: NIST’s Silicon Resistivity Data.

TBA

11.13 Dorsal Spines of Gasterosteus aculeatus.

%BENKA GARDENBAY BIG

stickleback =[...

4.2 4.4 4.9; 4.1 4.6 4.6; 4.2 4.5 4.3; 4.3 4.2 4.9; ...

4.5 4.4 4.7; 4.4 4.2 4.4; 4.5 4.5 4.5; 4.3 4.7 4.4 ];

lakes = [1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3];

[p table stats] = anova1(stickleback(:), lakes(:))

% p = 0.0267

%

% table =

%

% ’Source’ ’SS’ ’df’ ’MS’ ’F’ ’Prob>F’

% ’Groups’ [0.3033] [ 2] [0.1517] [4.3260] [0.0267]

% ’Error’ [0.7363] [21] [0.0351] [] []

% ’Total’ [1.0396] [23] [] [] []

%

% stats =

% gnames: 3x1 cell

% n: [8 8 8]

% source: ’anova1’

% means: [4.3125 4.4375 4.5875]

% df: 21
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% s: 0.1872

(a) Hypothesis H0 stating that the mean lengths of dorsal spines are the

same for the three lakes is rejected at the level α = 0.05 since the p-value is

0.0267.

(b) If the significance level was α = 0.01 the hypothesis H0 would not be

rejected.

11.14 Incomplete ANOVA Table.

TBA

11.15 Maternal Behavior in Rats.

TBA

11.16 Comparing Dialysis Treatments.

%Comparing Dialysis Treatments.

wchange = [...

2.90 2.97 2.67; 2.56 2.45 2.62;...

2.88 2.76 1.84; 1.73 1.20 1.33;...

2.50 2.16 1.27; 3.18 2.89 2.39;...

2.83 2.87 2.39; 1.92 2.01 1.66];

subject = [1 2 3 4 5 6 7 8 ...

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8]’;

treatment = [1 1 1 1 1 1 1 1 ...

2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3]’;

%(a) incorrect design // independent treatments

[p1 table1 stats1] = anova1(wchange(:), treatment)

% H0 not rejected!

% p1 = 0.1616

%

% table1 =

% ’Source’ ’SS’ ’df’ ’MS’ ’F’ ’Prob>F’

% ’Groups’ [1.2510] [ 2] [0.6255] [1.9901] [0.1616]

% ’Error’ [6.6004] [21] [0.3143] [] []

% ’Total’ [7.8515] [23] [] [] []

%

% stats1 =

% gnames: 3x1 cell

% n: [8 8 8]

% source: ’anova1’

% means: [2.5625 2.4137 2.0213]

% df: 21
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% s: 0.5606

% (b) correct solution block design

names = ’subject’,’treatment’;

[p2 table2 stats2] = anovan(wchange(:),subject, treatment,...

’varnames’,names)

% H0 rejected, the treatments differ.

% p2 =

% 0.0001

% 0.0028

%

% table2 =

% ’Source’ ’Sum Sq.’ ’d.f.’ ’Mean Sq.’ ’F’ ’Prob>F’

% ’subject’ [ 5.6531] [ 7] [0.8076] [11.9341] [6.0748e-005]

% ’treatment’ [ 1.2510] [ 2] [0.6255] [ 9.2436] [ 0.0028]

% ’Error’ [ 0.9474] [14] [0.0677] [] []

% ’Total’ [ 7.8515] [23] [] [] []

11.17 Material Scientist and Assessing Tensile Strength.

tensile = [ 73 68 74 71 67 ...

73 67 75 72 70 ...

75 68 78 73 68 ...

73 71 75 75 69 ];

chemical = [1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4];

bolt = [1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5];

[P,T,STATS,TERMS] = anovan( tensile, {chemical, bolt}, ’model’,’linear’, ...

’varnames’, strvcat(’chemical’, ’bolt’))

11.18 Oscilloscope.

TBA

11.19 Magnesium Ammonium Phosphate and Chrysanthemums.

% Response: Height of Chrysanthemum

hchr = [...

13.2 16.0 7.8 21.0;12.4 12.6 14.4 14.8;...

12.8 14.8 20.0 19.1;17.2 13.0 15.8 15.8;...

13.0 14.0 17.0 18.0;14.0 23.6 27.0 26.0;...
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14.2 14.0 19.6 21.1;21.6 17.0 18.0 22.0;...

15.0 22.2 20.2 25.0;20.0 24.4 23.2 18.2];

%50 gm/bu 100 gm/bu 200 gm/bu 400 gm/bu

treatment = [...

1 2 3 4; 1 2 3 4; 1 2 3 4; 1 2 3 4; 1 2 3 4;...

1 2 3 4; 1 2 3 4; 1 2 3 4; 1 2 3 4; 1 2 3 4];

[pval anovatab stats] = anova1(hchr(:), treatment(:))

% pval = 0.0989

% anovatab =

% ’Source’ ’SS’ ’df’ ’MS’ ’F’ ’Prob>F’

% ’Groups’ [119.7870] [ 3] [39.9290] [2.2522] [0.0989]

% ’Error’ [638.2480] [36] [17.7291] [] []

% ’Total’ [758.0350] [39] [] [] []

% stats =

% gnames: {4x1 cell}

% n: [10 10 10 10]

% source: ’anova1’

% means: [15.3400 17.1600 18.3000 20.1000]

% df: 36

% s: 4.2106

multcompare(stats, ’alpha’,0.1,’display’,’off’)

% 1.0000 2.0000 -6.2949 -1.8200 2.6549

% 1.0000 3.0000 -7.4349 -2.9600 1.5149

% 1.0000 4.0000 -9.2349 -4.7600 -0.2851

% 2.0000 3.0000 -5.6149 -1.1400 3.3349

% 2.0000 4.0000 -7.4149 -2.9400 1.5349

% 3.0000 4.0000 -6.2749 -1.8000 2.6749

m = stats.means

c = [1 -1 -1 1]; %mu1 + mu4 = mu2 + mu3

L = c(1)*m(1) + c(2)*m(2)+c(3)*m(3) + c(4)*m(4) %L=-0.02

LL= m * c’ %LL= -0.02

stdL = stats.s * sqrt(c(1)^2/4+c(2)^2/6+c(3)^2/6+c(4)^2/8)

%stdL = 3.5437

t = LL/stdL %t = -0.0056

%test H_o: mu * c’ = 0 H_1: mu * c’ ~= 0

% p-value

2 * tcdf(-abs(t), 36) %pval= 0.9955; 36=40-4
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%or 90% confidence interval for population contrast

[LL - tinv(0.95, 36)*stdL, LL + tinv(0.95, 36)*stdL]

%-6.0029 5.9629

11.20 Color Attraction for Oulema melanopus.

TBA

11.21 Raynaud’s Phenomenon.

TBA

11.22 Simvastatin.

TBA

11.23 Antitobacco Media Campaigns.

TBA

11.24 Orthosis.

TBA

11.25 Bone Screws.

TBA

11.26 R&R Study.

TBA

11.27 Additive R&R ANOVA for Measuring Impedance.

TBA

11.1 Additional Problems

11.a1 Nulatron Tumb Screws. A manufacturer of flow chambers uses Ny-

lon 6 (Nulatron) for production of tumb screws. The manufacturer orders Ny-

latron from two suppliers. The material is tested for shear strength (in PSI at

73◦F). Four batches from each supplier are selected at random and three sam-

ples from each batch used for testing. The shear strength varies from batch to

batch.

(a) You are interested in testing for the difference between the two suppli-

ers, but want to account for the differences between batches. Do your testing

at α= 0.05 significance level.

(b) Compare the suppliers by ignoring batches, using the two-sample t-test.
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Supplier 1 2

Batch 1 2 3 4 1 2 3 4

9620 9590 9715 9690 9700 9710 9670 9695

9670 9610 9675 9665 9680 9745 9720 9680

9675 9685 9645 9710 9675 9665 9680 9730

(a) Here the suppliers are fixed effects but batches are random. The hy-

pothesis H0 : αi = 0 is tested by F = MSA/MSB(A) which under H0 has F

distribution with 2−1 and 2(4−1) degrees of freedom. MSA = 6666.7,FA =
5.4545, pa = 0.0582. Thus H0 not rejected.

The hypothesis of homogeneity of batches H0 : β j(i) = 0 is tested by F =
MSB(A)/MSE which under H0 has F distribution with 2(4−1) and 2 ·3(4−1)

degrees of freedom. MSA(B) = 1222.2,FB(A) = 1.1757, pb(a) = 0.3670,MSE =
1039.6. Thus, H0 not rejected.

(b) Two-sample t statistic (pooled standard deviations) is t=−2.4738, which

leads to a two-sided p value of 0.0216, suggesting that the suppliers are sig-

nificantly different.

11.a2 Chair Yoga. The chair yoga pose (Utkatasana, Fig. 11.1) is known

for improving posture and balance because of the way how it distributes the

body weight over the foot (it also helps in strengthening the muscles). A group

of students conducted a study with n = 19 subjects to determine whether the

depth (angle between the calves and thigh) of the yoga chair pose affects the

uniformity of force distributions. Subjects were requested to stand on the bal-

ance board with a specific posture, they were then asked to assume the yoga

chair pose until they reached 60, then 90, then 120, then 150 degrees for 10

seconds each. The balance board recorded 4 forces, right bottom, left bottom,

right top, and left top, from which only their coefficient of variation, cvforce,

is of interest in this problem. The data structure chairyoga.mat contains

fields subject, angle, and cvforce, each as a vector 654×1. The original

high-frequency data were subsampled to decrease time-dependence of force

measurements.

The smaller the coefficient of variation of the four forces cvforce is, the

better/safer the pose.

(a) Test whether the population means for cvforce are the same for the

four levels of angle, that is, test the hypothesis H0 : µ60 = µ90 = µ120 = µ150.

Use a block design where angle is the factor of interest and subject is a

blocking variable. Copy the ANOVA-table from the output.

Hint. Use an additive anovan with angles and subjects as the factors.

(b) If the hypothesis of equality of means from (a) is rejected, which means

differ. Which mean is the smallest (“safest” in the sense of minimum relative

variability).
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Fig. 11.1 The 90◦ chair yoga pose (Utkatasana).

(c) The procedure multcompare will give you simultaneous confidence in-

tervals for all differences between the means. What is the 95% CI for µ90−µ120.

Are the two means significantly different and why yes or not?

(d) Run multcompare for the subjects. Which subject (out of 19) was the

most disbalanced (had maximum CV)? Which subject was the most stable?

%Chair Yoga

load ’chairyoga.mat’

figure(1)

cvforce = chairyoga.cvforce;

angle = chairyoga.angle;

subject = chairyoga.subject;

varnames =’angle’,’subject’;

[p,table,stats] = anovan(cvforce,angle,subject, ...

’model’,’linear’,’varnames’,varnames);

% table =

% ’Source’ ’Sum Sq.’ ’d.f.’ ’Singular?’ ’Mean Sq.’ ’F’ ’Prob>F’

% ’angle’ [ 0.1489] [ 3] [ 0] [ 0.0496] [3.5386] [0.0145]

% ’subject’ [19.2803] [ 18] [ 0] [ 1.0711] [76.3601] [0]

% ’Error’ [ 8.8653] [ 632] [ 0] [ 0.0140]

% ’Total’ [28.3819] [ 653] [ 0] []

figure(2)

multcompare(stats,’dimension’,1)

% 1.0000 2.0000 -0.0456 -0.0119 0.0218

% 1.0000 3.0000 -0.0053 0.0288 0.0630

% 1.0000 4.0000 -0.0151 0.0187 0.0525

% 2.0000 3.0000 [0.0050 0.0408 0.0765] <-- Interval

% 2.0000 4.0000 -0.0047 0.0307 0.0660
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% 3.0000 4.0000 -0.0459 -0.0101 0.0257

figure(3)

multcompare(stats,’dimension’,2) ;





Chapter 12

Distribution Free Tests

Friday the 13th.

fri6 = [9 6 11 11 3 5];

fri13 =[13 12 14 10 4 12];

[pvae, pvaa, n, plusses, ties] =signtst(fri6, fri13)

%pvae = 0.1094

%pvaa = 0.1103

%n = 6

%plusses = 1

%ties = 0

The output [pvae, pvaa, n, plusses, ties] consists of the exact one-

sided p-value (pvae), normal approximation to one sided p-value (pvaa), sam-

ple size n adjusted for the ties (depending on policy of tie-treatment), number

of plusses (or minuses, whatever is more extreme for H0), and number of

ties.

The exact p-value is
(

(6
0

)

+
(6
0

)

)

1
26 = 7/64= 0.1094. H0 is not rejected at level

α= 0.10.

The built-in MATLAB function signtest provides an alternative way to

solve this problem, but is somewhat lean in reporting and options, compared

to signtst.

Reaction Times.

TBA

Simulation.

TBA

12.4 Grippers.

95
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(a)

%Left hand (X)

X = [ 140 90 125 130 95 121 85 97 131 110]

%Right hand (Y)

Y = [ 138 87 110 132 96 120 86 90 129 100]

[W, Zstat, pval] = wsirt(X, Y, 1)

% W = 37 [Sum of ranks pos - sum of ranks negative, should be 0 under H_0]

% Zstat = 1.8956

% pval = 0.0326

% (b)

d = X - Y %mean(d) = 3.6

n= length(X);

sd = std(d) %5.4610

tstat = mean(d)/(sd/sqrt(n)) %2.0846

pval = 1-tcdf(tstat, n-1) %0.0334 No opinion change.

Iodide and Serum Concentration of Thyroxine.

TBA

Weightlifters.

TBA

Cartilage Thickness in Two Osteoarthritis Models.

TBA

A Claim.

TBA

Claustrophobia.

% Claustophobia

A =[...

4.6 4.7 4.9 5.1 7.0 4.9 5.1 5.2 5.5 4.8 ...

5.7 5.0 5.8 6.1 6.5 7.0 6.4 5.2 4.6 4.7 ...

4.9 6.4 5.9 4.7 5.8 5.2 5.4 6.1 7.7 6.2 ...

5.8 5.1 6.5 2.2 6.9 5.0 6.5 7.2 8.2 6.7];

B =[...

5.2 5.3 5.4 7.7 8.1 4.9 5.6 6.2 6.3 7.0 ...

7.0 7.8 6.8 7.7 8.0 6.6 5.5 8.2 8.1 5.0];

[sumranks1, tstat, pval] = wmw(A, B, -1)

% also [sumranks1, tstat, pval] = wsurt(A, B, -1)

% sumranks1 = 1041
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% tstat = -2.8094

% pval = 0.0025

%

% H0 rejected, scores for A lower than for B

Nonparametric Stats with Raynaud’s Phenomenon.

TBA

Cotinine and Nicotine Oxide.

TBA

Coagulation Times.

TBA

Blocking by Rats.

TBA





Chapter 13

Goodness of Fit Tests

13.1 Q-Q Plot for
√

2χ2.

TBA

13.2 Not at all like me.

Results: χ2 = 2.55, χ2
4,1−0.05 = 9.4877, Do not reject H0.

%Not at All Like Me

ni=[8 9 21 8 4];

n= sum(ni)

%n = 50

theopi = [10 20 40 20 10]/100

%theopi = 0.1000 0.2000 0.4000 0.2000 0.1000

npi=50*theopi

%npi = 5 10 20 10 5

ch2 = sum((ni - npi).^2 ./npi)

%ch2 = 2.5500

pval = 1 - chi2cdf(2.55, 5-1)

%pval = 0.6357

crit= chi2inv(1-0.05, 5-1)

%crit = 9.4877

13.3 Cell Counts.

Sequence {(ni−npi)
2/(npi )} : [2.2368 1.9059 0.1779 0.1779 0.5309]. χ2 =

5.0294 χ2
4,1−0.05 = 9.4877.

13.4 GSS Data.

99
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χ2 = 25.0860, χ2
3,1−0.05 = 7.8147, npi : [309.4318 557.2213 28.685 3.6619].

13.5 Strokes on “Black Monday".

np1 = 18.7778 0.44444 1 1.7778 1.7778 2.7778 1. χ2 = 27.5556 χ2
6,1−0.05 =

12.5916.

13.6 Benford’s Law.

TBA

13.7 Simulational Exercise.

TBA

13.8 Deathbed Scenes.

TBA

13.9 Grouping in a Vervet Monkey Troop.

TBA

13.10 Crossing Mushrooms.

Total number of observations is n= 224. Theoretical frequencies are np1 =
224 · 9

16 = 126, np2 = np3 = 224 · 3
16 = 42, and np4 = 224 · 1

16 = 14.

χ2 =
r

∑

i=1

(ni −npi)
2

npi

=
(−6)2

126
+

112

42
+

(−6)2

42
+

12

14
= 4.095.

Since χ2
4−1,0.95 = 7.81, the results do not disagree with the theory. In other

words, H0 is not rejected at 5% significance level.

3.11 Renner Honey Data Revisited.

TBA

13.12 PCB in Yolks of Pelican Eggs.

anacapa =[452 184 115 315 139 177 214 356 166 246 ...

177 289 175 296 205 324 260 188 208 109 204 ...

89 320 256 138 198 191 193 316 122 305 203 ...

396 250 230 214 46 256 204 150 218 261 143 ...

229 173 132 175 236 220 212 119 144 147 171 ...

216 232 216 164 185 216 199 236 237 206 87];

hist((anacapa), 20)
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prctile(anacapa, [10 20 30 40 50 60 70 80 90])

%122.0000 148.5000 175.0000 192.0000 205.0000 216.0000

% 232.0000 256.0000 315.0000

prcs = prctile(anacapa, [12.5 25 37.5 50 62.5 75 87.5 ])

%135.7500 169.7500 187.6250 205.0000 216.2500 239.2500 299.3750

%[-inf] 46 87 89 109 115 119 122 132 138 [138.5]

% 139 143 144 147 150 164 166 171 173 [174]

% 175 175 177 177 184 185 188 191 193 [195.5]

% 198 199 203 204 204 205 206 208 212 [213]

% 214 214 216 216 216 218 220 229 230 [231]

% 232 236 236 237 246 250 256 256 260 [260.5]

% 261 289 296 305 315 316 320 324 356

% 396 452 [inf]

ni = [9 9 9 9 9 9 11]

ei = 65 * diff(normcdf([-1000 138.5 174 195.5 213 231 260.5 2000], ...

mean(anacapa), std(anacapa) ))

chi2 = sum( (ni - ei).^2 ./ ei )

1-chi2cdf(chi2, 7-1-2)

% ei = 10.6016 9.5833 7.1860 6.1970 6.3072 9.2636 15.8613

% chi2 = 4.6503

% pval = 0.3251

% p = 0.3251

[h,p,stats] = chi2gof(anacapa,’cdf’,...

@(z)normcdf(z,mean(anacapa),std(anacapa)),...

’edges’,[0 138.5 174 195.5 213 231 260.5 452 1000],’nparams’,2)

stats.E

% stats =

% chi2stat: 4.6503

% df: 4

% edges: [0 138.5000 174 195.5000 213 231 260.5000 1000]

% O: [9 9 9 9 9 9 11]

% E: [1x7 double]

%

% ans = 10.6016 9.5833 7.1860 6.1970 6.3072 9.2636 15.8613

[h,p,stats] = chi2gof(anacapa)

13.13 Number of Leaves per Whorl in Ceratophyllum demersum.

TBA

13.14 From 1998-2002 U.S. National Health Interview Survey (NHIS).
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(a) Probabilities for Binomial B in(2,0.515) distribution are: p0 =
(2
0

)

0.5150(1−
0.515)2 = 0.2352, p1 =

(2
1

)

0.5151(1−0.515)1 = 0.4995, p2 =
(2
1

)

0.5152(1−0.515)0 =
0.2652. Theoretically expected sibship counts, if the distribution for number of

boys is B in(2,0.515), are 7541 ·0.2352 = 1773.6, 7541 ·0.4995 = 3766.7, and

7541 ·0.2652 = 1999.9. Thus,

Number of Boys 0 1 2

Observed number of sibships 1,941 3,393 2,207

Theoretical number of sibships 1,773.6 3,766.7 1,999.9

Difference 167.4 -373.7 207.1

We see that there is a difference between Observed and Theoretical numbers

of sibships, especially for the case of sibships with one boy where the differ-

ence is -373.7. [Later in the course we will learn to test if this difference is

significant]

(b) First note that n = 50936, i.e., n is the total number of children. The

number of boys is 13079+2×6545= 26169. Thus, p̂ = 26169/50936.

The following MATLAB code calculates Z statistic and associated p value

for the one-sided alternative.

z = (26169/50936 - 1/2)/sqrt(0.5*0.5/50936)

%z = 6.2121

1-normcdf(6.2121)

%ans = 2.6141e-010

Since Z = 6.2121 falls in the rejection region RR = [1.645,∞), the hypothe-

sis H0 : p = 1/2 is rejected. The proportion of boys in this population is signifi-

cantly higher than 1/2.

Note that p-value is smaller than α = 0.05 leading to the same decision to

reject H0.

13.15 Neuron Fires Revisited.

%neuronfires.mat
load neuronfires
[f] = hist(Y, 2.5:5:997.5)
[ni x]=hist(f,unique(f))
%ni = 6 18 21 45 39 25 25 11 6 3 1
%x = 1 2 3 4 5 6 7 8 9 10 12

ni=[ni(1:9) ni(10)+ni(11)] %join the last two cells

%ni = 6 18 21 45 39 25 25 11 6 4

npi= 200 * [poisscdf(1,mean(f))...
poisspdf(2:9,mean(f)) 1-poisscdf(9,mean(f))]

% note that the first probability includes 0 and 1.
%npi = 8.4644 17.4079 28.6940 35.4730 35.0828
% 28.9141 20.4257 12.6256 6.9371 5.9754
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ch2 = sum((ni-npi).^2./npi)
%ch2 = 8.3400

pval = 1-chi2cdf(ch2, 10-1-1) %estimated mean, -1 df
%pval = 0.4010

The counts in the consecutive intervals are consistent with the Poisson dis-

tribution (λ̂= 4.945, p-value 0.4010).

13.16 Cloudiness in Greenwich.

TBA

13.17 Distance between Spiral Reversals in Cotton Fibers.

TBA





Chapter 14

Models for Tables

14.1 Amoebas and intestinal disease.

TBA

14.2 Drinking & Smoking.

TBA

14.3 Alcohol and Marriage.

Abstain 1 - 60 over 60 Rows

Single 67:49 213:246 74:59 354

Widowed 85:116 633:589 129:142 847

Divorced 27:14 60:71 15:17 102

Columns 179 906 218 1303

χ2 = 6.6+4.4+3.8+3.3+1.2+12.1+1.7+0.24 = 41.64, d f = (3−1)·(3−1)= 4,

Critical value χ2
4,1−0.05 = 9.448, Decision: Dependent.

14.4 Family Sizes.

[chi2,pvalue,exp]=tablerxc([145 81 57 22 9 8; ...

151 73 71 33 13 10; 124 60 80 42 13 8])

%chi2 = 16.2783

%

%pvalue = 0.0919

%

%exp = 135.2400 68.9080 66.9760 31.2340 11.2700 8.3720

% 147.4200 75.1140 73.0080 34.0470 12.2850 9.1260

% 137.3400 69.9780 68.0160 31.7190 11.4450 8.5020

105
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14.5 Nightmares.

[chi2, pvalue, exp]=tablerxc([55 60; 105 132])

%exp = 52.2727 62.7273

% 107.7273 129.2727

%chi2 = 0.3875

%pvalue = 0.5336

14.6 Independence of Segregation.

TBA

14.7 Site of Corpus Luteum in Caesarean Births.

TBA

14.8 An Easy Grade?

expected prof A prof B prof C total

grades A 15 18 17 50

grades B 24 28.8 27.2 80

grades C 21 25.2 23.8 70

total 60 72 68 200

χ2 = 24.037 exceeds critical value χ2
4,0.99 = 13.277. Reject H0.

14.9 Importance of Bystanders.

H0: Assistance and the number of bystanders are independent.

MATLAB output

[chisq, p, expected]=tablerxc([11 2; 16 10; 4 9])

% chisq = 7.9078

% p = 0.0192

% expected =

% 7.7500 5.2500

% 15.5000 10.5000

% 7.7500 5.2500
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yields the p-value smaller than 2%. The statistic χ2 = 7.9078 is significant,

that is, H0 is rejected.

14.10 Baseball in 2003.

TBA

14.11 Psychosis in Adopted Children.

Hint. For (a) and (b) use theory from Chapter (Two Samples, page 111)

since the tables are not paired.

14.12 The Midtown Manhattan Study.

TBA

14.13 Tonsillectomy and Hodgkin’s Disease.

We used m-file unmatch.m

%or = 2.1429

%chi2 = 2.2273

%lor = 0.7621

%varlor = 0.2608

%stdlor = 0.5107

%cill = -0.2388

%cilu = 1.7631

%cil = 0.7876

%ciu = 5.8303

14.14 School Spirit at Duke.

TBA

14.15 Two Halloween Questions with Easy Answers.

TBA

14.16 Runners and Heart Attack.

(a) χ2 = 2.639, critical value is χ1,0.95 = 3.841, do not reject H0. (b) The error

of second kind is to accept the hypothesis that running and heart attacks are

independent, when in fact, they are dependent.]

14.17 Perceptions of Dangers of Smoking.

TBA

14.18 Red Dye No 2.
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TBA

14.19 Cooper Hawks.

TBA

14.20 Hepatic Arterial Infusion.

TBA

14.21 Vaccine Efficacy Study.

TBA

14.1 Additional Problems

14.a1 Paired Odds Ratio. Show, by considering Mantel-Haenszel method-

ology (page 555), that the odds ratio for paired table [13;42] is equal to 3/4.

By parallelizing the paired table, there are one table [11;00], three

[10;01], four [01;10], and two [00;11].

Since for multiple tables OR =
∑

i ai di /ni
∑

i bi ci /ni
(page 551), it follows

∑

i aidi /ni =
B/2,

∑

i bi ci /ni = C/2, where [AB;CD] is the original paired table.

14.a2 Chlordiazopoxide Use and Congenital Heart Defects. Medica-

tion chlordiazepoxide (Librium) is indicated for the relief of acute agitation

and hyperactivity (e.g., alcoholism, anxiety, hysterical and panic states, drug

withdrawal) via its sedative, appetite-stimulating and weak analgesic actions.

Rothman et al. (1979) explored the link between chlordiazopoxide use in early

pregnancy and incidence of congenital heart defects in babies. The retrospec-

tive analysis is summarized in the following table:

Chlordiazopoxide Use

Yes No Total

Case Mothers 4 386 390

Control Mothers 4 1250 1254

Total 8 1636 1644

Let p1 and p2 be the probabilities of a birth with congenital heart defect for

exposed and control mothers, respectively.

(a) By using MATLAB and Fisher’s exact test, test the hypothesis H0 : p1 =
p2 versus the one sided alternative H1 : p1 > p2.

(b) Compare this test with the test for two proportions (normal approxima-

tion Z, page 378).
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(a) The p-value is
∑8

k=4

(8
k

)( 1636
390−k

)

/
(1644

390

)

= 1-hygecdf(3, 1644, 8, 390)=0.0964

> 5%.

Sometimes, the mid-p value is reported. The mid-p value is defined as

a tail probability where the observed value is taken with weight 1/2, 1/2×
(8
4

)(1636
386

)

/
(1644

390

)

+
∑8

k=5

(8
k

)( 1636
390−k

)

/
(1644

390

)

= 0.5 * hygepdf(4, 1644, 8, 390)

+ (1- hygecdf(4, 1644, 8, 390))=0.0590.

(b) The approximation is closer to mid-p value, and not very accurate given

the fact that there are only 8 births with congenital heart defects. This could

be misleading since at 5% level, the nonsignificant finding would be declared

significant.

p1=4/390; p2 = 4/1254; n1=390; n2=1254;

pbar= n1/(n1+n2) * p1 + n2/(n1+n2) * p2 %pbar = 0.0049

z = (p1 - p2)/sqrt( pbar * (1-pbar) * (1/n1+1/n2)) %1.7515

1-normcdf(1.7515) %0.0399 %p-value

Rothman, K. J., Fyler, D. C., Goldblatt, A., and Kreidberg, M. B. (1979).

Exogenous hormones and other drug exposures of children with congenital

heart disease. Am. J. Epidemiol.,109, 433–439.





Chapter 15

Correlation

15.1 Correlation Between Uniforms and Their Squares.

a = 2 * rand(10000,1) - 1;

b = a.^2;

corr(a,b)

15.2 Muscle Strength of “Ehtanol Abusers”.

Hints: (a) Statistic t= rHS

√

n−2
1−r2

HS

has Student t distribution with n−2

degrees of freedom. The alternative is one sided (upper tail critical), p-value is

1-tcdf(t, n-2).

(b) Recall, rHS.A = rHS−rHA rSA
√

(1−r2
HA

)(1−r2
SA

)
. Statistic t= rHS.A

√

n−1−2
1−r2

HS.A

has Student

t distribution with n−3 degrees of freedom.

(c) Find 95% CI for ω = 1
2 log

1+ρHS

1−ρHS
which is population counterpart of w =

1
2 log

1+rHS

1−rHS
. The latter has normal distribution,

w ∼N (ω,
1

n−3
),

which is useful to find CI for ω. Back transform lower and upper bounds of CI

for ω by r = e2w−1
e2w+1

.

15.3 Vending Machine and Pharmacy Errors.

TBA

15.4 Vending Machine and Pharmacy Errors Revisited.

111
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errors= [ 2, 3, 10, 9, 5, 7, 8, 4]’;

coke =[112, 100, 220, 250, 100, 200, 160, 100]’;

people = [10000, 6000, 17000, 20000, 9000, ...

15000, 14000, 8000]’;

corr(errors, coke)

% 0.8785

corr(errors, people)

% 0.8821

corr(coke, people)

% 0.9735

(0.8785-0.8821*0.9735)/(sqrt(1-0.8821^2)*sqrt(1-0.9735^2))

% 0.1836

15.5 Corn Yields and Rainfall.

TBA

15.6 Drosophilæ.

Grand Canyon: w1 = 0.5763 Flagstaff: w2 = 0.8107

The test statistic for H0 : ρ1 = ρ2 is: z = 0.5763−0.8107p
1/36+1/17

=−0.7965.

p-value against two sided hypothesis is 2Φ(−0.7965) = 0.4257. Conclusion:

Do not reject null hypothesis.

15.7 Confidence Interval for the Difference of Two Correlation Coeffi-

cients.

TBA

Oxygen Intake.

TBA

15.9 Obesity and Pain.

(a) (4461.5− 10∗ 62.7∗ 7.7)/(
p

(45141− 10∗ 62.72)∗
p

(799.5− 10∗ 7.72)) =
−0.3339.

(b) t=
p

(n−2)∗r/
p

(1−r2)=−1.0019. pvaluecd f t (−1.0019,10−2)= 0.1729,

(c) (−0.3339+0.2089∗0.8627)/
p

(1−0.20892)/
p

(1−0.86272)=−0.3107.

(d)

omint=[om-1.96/sqrt(10-3) om+1.96/sqrt(10-3)]

% omint = -1.0880 0.3936

(exp(2*omint)-1)./(exp(2*omint) + 1)

% ans = -0.7962 0.3745
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15.1 Additional Problems

15.a1 Correlation between X i and X . Let X1, X2, . . . , Xn be independent

with common variance σ2. Show that

Corr(X i , X )= 1/
p

n, 1≤ i ≤ n.

Without loss of generality assume that EX i = 0. Then

Cov(X i , X )= E(X i X )= X2
i /n+

∑

j 6=i

EX i X j /n= X2
i /n+EX i

∑

j 6=i

EX j /n=σ2/n.

The correlation is

Corr(X i , X )= Cov(X i , X )/[V ar(X i ) V ar(X )]1/2 =
σ2/n

p
σ2 ·σ2/n

= 1/
p

n.





Chapter 16

Regression

16.1 Regression with Three Points.

TBA

16.2 Age and IVF Success Rate.

TBA

16.3 Sharp Dissection and Severity of Postoperative Adhesions.

lasd = [ 2.4849 3.2581 3.3322 3.5835 ...

3.6109 3.6889 3.8918 4.4188 ...

4.5433 4.5643 4.5951 4.5951 ...

4.6540 4.7875 4.8752 4.8978 ...

4.9053 5.0499 5.5255 5.8051 ...

6.0186 6.0210];

sesco = [6 7 7 7 9 9 8 14 13 10 10 ...

10 11 12 12 12 12 15 16 18 17 18];

x = lasd’;

y = sesco’;

n = length(x) %n=22

p = 2; %number of parameters (beta0, beta1)

% Sums of Squares

SXX = sum( (x - mean(x)).^2 ) %17.9017

SYY = sum( (y - mean(y)).^2 ) %279.5000

SXY = sum( (x - mean(x)).* (y - mean(y)) ) %65.8276

% estimators of coefficients beta1 and beta0

b1 = SXY/SXX %3.6772

b0 = mean(y) - b1 * mean(x) %-5.0651

% predictions

yhat = b0 + b1 * x;

115
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%residuals

res = y - yhat;

% ANOVA Identity

SST = sum( (y - mean(y)).^2 ) % 279.5000

SSR = sum( (yhat - mean(y)).^2 ) % 242.0592

SSE = sum( (y - yhat).^2 ) % 37.4408

% forming F, test of adequacy of linear regression

MSR = SSR/(p - 1) % 242.0592

MSE = SSE/(n - p) %should be sigma2hat, 1.8720

F = MSR/MSE %129.3023

pvalue = 1-fcdf(F, p-1, n-p)

%H_0: regression has beta1=0, no need for

% linear fit pval= 3.4983e-010

% Other measures of goodness of fit

R2 = SSR/SST %0.8660

R2adj = 1 - (n-1)/(n-p)* SSE/SST %0.8593

s = sqrt(MSE) % 1.3682

% Standard error of coefficient estimators

sb1 = s/sqrt(SXX) % 0.3234

sb0 = s * sqrt(1/n + (mean(y))^2/SXX ) %3.7303

% are the coefficients equal to 0?

t1 = b1/sb1 %11.3711

pb1 = 2 * (1-tcdf(abs(t1),n-p) ) % 3.4983e-010

t0 = b0/sb0 % -1.3578

pb1 = 2 * (1-tcdf(abs(t0),n-p) ) % 0.1896

% predicting y for the new observation x, CI and PI

newx = 4;

ypred = b0 + b1 * newx % 9.6436

sym = s * sqrt(1/n + (mean(x) - newx)^2/SXX )

%s for y mean 0.3343

syp = s * sqrt(1 + 1/n + (mean(x) - newx)^2/SXX )

%s for y prediction 1.4085

%intervals CI and PI

alpha = 0.05;

%mean response interval

lbym = ypred - tinv(1-alpha/2, n-p) * sym;

rbym = ypred + tinv(1-alpha/2, n-p) * sym;

% prediction interval

lbyp = ypred - tinv(1-alpha/2, n-p) * syp;

rbyp = ypred + tinv(1-alpha/2, n-p) * syp;

%print the intervals

[lbym rbym] % 8.9463 10.3409

[lbyp rbyp] % 6.7055 12.5816

16.4 Kanamycin Levels in Premature Babies.

TBA

16.5 Degradation of Scaffolds.
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% (a) [56.2193 - 6.6109 day], 0.6818.

% (b) t = -1.3713, pval = 0.0921

% (c)[-8.5882, -4.6336]

% (d) 19.8593, 11.1969

16.6 Glucosis in Lactococcus Lactis.

TBA

16.7 Weight and Latency in Rats. Data consisting of rat body weight

(grams) and latency to seizure (minutes)

p = 2; %number of parameters (beta0, beta1)
%"wei" measurement is "x", "latency" is "y".
x = wei ; %column vector
mean(x) % xbar = 411
y = latency ; %column vector
n = length(x);
% Sums of Squares
SXX = sum( (x - mean(x)).^2 ) %SXX=17754
SYY = sum( (y - mean(y)).^2 ) %SYY=8.4168
SXY = sum( (x - mean(x)).* (y - mean(y)) ) %SXY=258.53
% estimators of coefficients beta1 and beta0
b1 = SXY/SXX %0.0146
b0 = mean(y) - b1 * mean(x) %-3.6436
% predictions
y_hat = b0 + b1 * x;
%residuals
res = y - y_hat;
% ANOVA Identity
SST = sum( (y - mean(y)).^2 ) %which is SYY=8.4168
SSR = sum( (y_hat - mean(y)).^2 ) %3.7647
SSE = sum( (y - y_hat).^2 ) %=sum(res.^2), 4.6521
% forming F and test of adequacy of regression
MSR = SSR/(p - 1) %3.7647
MSE = SSE/(n - p) %estimator of variance, 0.3579
s = sqrt(MSE) %0.5982
F = MSR/MSE %10.5201
pvalue = 1-fcdf(F, p-1, n-p)
%testing H_0: regression has beta1=0,
%that is no need for linear fit, p-val = 0.0064
% Other measures of goodness of fit
R2 = SSR/SST %0.4473
R2adj = 1 - (n-1)/(n-p)* SSE/SST %0.4048
% Standard deviations of coefficient estimators
sb1 = s/sqrt(SXX) %0.0045
sb0 = s * sqrt(1/n + (mean(x))^2/SXX ) %1.8517
% are the coefficients equal to 0?
t1 = b1/sb1 %3.2435
pb1 = 2 * (1-tcdf(abs(t1),n-p) ) %0.0064
t0 = b0/sb0 %-1.9677
pb0 = 2 * (1-tcdf(abs(t0),n-p) ) %0.0708
% predicting y for the new observation x, CI and PI
newx = 410; %wei = 410
y_newx = b0 + b1 * newx % 2.3268
sym = s * sqrt(1/n + (mean(x) - newx)^2/SXX )
%st.dev. for mean response, sym = 0.1545

syp = s * sqrt(1 + 1/n + (mean(x) - newx)^2/SXX )
%st.dev. for the prediction syp = 0.6178

alpha = 0.05;
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%mean response interval
lbym = y_newx - tinv(1-alpha/2, n-p) * sym;
rbym = y_newx + tinv(1-alpha/2, n-p) * sym;
% prediction interval
lbyp = y_newx - tinv(1-alpha/2, n-p) * syp;
rbyp = y_newx + tinv(1-alpha/2, n-p) * syp;
%print the intervals
[lbym rbym] % 1.9929 2.6606
[lbyp rbyp] % 0.9920 3.6615

16.8 Rinderpest virus in Rabbits.

TBA

16.9 Hemodilution.

TBA

16.10 Anscombe’s Data Sets.

TBA

16.11 Potato Leafhopper.

TBA

16.12 Crossvalidating Bayesian Regression.

model{

for( i in 1 : m ) {

mu[i] <- beta0 + beta1 * x1[i] + beta2 * x2[i]

y[i] ~ dnorm(mu[i],tau)

}

for( i in m+1 : n) {

ypred[i] <- beta0 + beta1 * x1[i] + beta2 * x2[i]

error[i] <- ypred[i] - y[i]

se[i] <- error[i] * error[i]

}

mse <- mean(se[m+1:n])

beta0 ~ dnorm( 0.0,1.0E-5)

beta1 ~ dnorm( 0.0,1.0E-5)

beta2 ~ dnorm( 0.0,1.0E-5)

tau ~ dgamma(0.001,0.001)

sigma <- 1/sqrt(tau)

}

DATA
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list(n=40, m=20,

x1=c(0.17, 0.39, 0.83, 0.80, 0.06, 0.39, 0.52, 0.41,

0.65, 0.62, 0.29, 0.43, 0.01, 0.98, 0.16, 0.10,

0.37, 0.19, 0.48, 0.33, 0.95, 0.92, 0.05, 0.73,

0.26, 0.42, 0.54, 0.94, 0.41, 0.98, 0.30, 0.70,

0.66, 0.53, 0.69, 0.66, 0.17, 0.12, 0.99, 0.17),

x2=c(1, 6, 9, 7, 2, 4, 5, 10, 2, 9, 7, 4, 2, 5,

5, 2, 6, 3, 4, 6, 3, 3, 7, 3, 9, 10, 8, 4,

6, 2, 10, 9, 9, 3, 6, 1, 5, 4, 2, 2),

y=c(3.038, 1.984, 3.241, 2.526, 1.532, 2.585, 1.855, -1.092,

5.807, 1.162, 0.563, 2.660, 0.584, 4.956, 0.857, 0.877,

1.859, 2.143, 2.280, 0.825, 5.259, 4.260, -0.394, 4.512,

-0.623, -0.275, 1.304, 4.853, 0.748, 6.598, -2.140, 0.861,

2.676, 3.779, 2.214, 5.466, -0.333, -0.311, 6.785, 2.789)

)

INITS

list( beta0=0, beta1=0, beta2=0, tau=1)

16.13 Taste of Cheese.

Use the code tastecheese.m

16.14 Slowing the Progression of Arthritis.

TBA

16.15 Insulin on Opossum Liver.

TBA

16.16 Slope in EIV regression. Show that the EIV regression slope in (??)

tends to Sxy/Sxx when η→ 0.

TBA

16.17 Interparticular Spacing and Wavelength in Nanoprisms 2.

TBA

16.1 Additional Problems

16.a1 Failures of Silver-zinc Batteries. Silver-zinc batteries feature a

water-based chemistry and contain no lithium or flammable liquids. Devel-

oped originally for satellite applications, these batteries are beginning to re-

place lithium-ion batteries in mobile phones, laptop computers, and battery-
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powered medical devices. For example, some modern implantable hearing aids

are powered by silver-zinc rechargeable batteries.

The data provided in silverzinc.dat|mat are collected in the 1980’s

when silver-zink battery technologies have been analyzed by NASA (Sidek

et al, 1980; also Johnson and Wichern, 2007). The response variable is ctf -

the number of cycles-to-failure, while the covariates are chr - charge rate (in

Amp), dchr - discharge rate (in Amp), ddch - depth of discharge (in % of rated

Amp/hours), temp - temperature (in degC), and ecv - end of charge voltage (in

Volts).

(a) Find a 95% CI for the coefficient of correlation between temp and

log(ctf).

(b) Propose a linear regression model to predict logarithm of cycles-to-

failure, log(ctf), that uses a subset of predictors from chr, dchr.ˆ2,

ddch, sqrt(temp), and ecv. Defend the choice of your model (one para-

graph).

• Sidek, S., Leibecki, H., and Bozek, J. (1980). Failure of silver-zinc cells

with competing failure modes: preliminary data analysis. NASA Technical

Memorandum 81556, Lewis Research Center, Cleveland OH.

• Johnson, R. and Wichern, D. (2007). Applied Multivariate Statistical Anal-

ysis, 6th edition. Prentice Hall, Upper Saddle River, NJ.

16.a2 ANOVA Table from r and SST. Fully recover ANOVA table in

regression with n = 26 pairs of observations (x, y), for which r = 0.88 and

SST = 134.75.

Source SS DF MS F p-value

Regression r2SST 1 r2SST (n−2)r2

1−r2 1-fcdf(F, 1, n-2)

Error (1− r2)SST n−2 (1−r2)SST
n−2

Total SST n−1

16.a3 Release kinetics of BMP-2 from alginate hydrogels. (Courtesy

of Lauren Priddy) Polymeric biomaterials such as alginate are promising cell

and protein delivery vehicles for bone tissue engineering due to their biocom-

patibility, moldability, and tunable degradation rates. Alginate hydrogels have

been used to deliver bone morphogenetic protein-2 (BMP-2) in critically-sized

rat bone defect models. Partial oxidation, whereby a small percentage of the

uronate residues are oxidized, allows the polymer chains to be more suscepti-

ble to hydrolysis and increases the degradation rate in vitro. The goal of this

experiment was to determine the release kinetics of BMP-2 from oxidized al-

ginate hydrogels.

In this study, oxidized alginate hydrogels were loaded with BMP-2 and

incubated in media, Figure 16.1(a). The media were collected and replaced

with fresh media at the following time points: 4, 16, 24, 40, 48, 72, and 120
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Fig. 16.1 (a) Injection of alginate hydrogel into nanofiber mesh prior to incubation; (b) Scat-

terplot of cumulative BMP-2 over time.

hours. The amount of BMP-2 (nanograms) at each time point was quanti-

fied from the media collections using an enzyme-linked immunosorbent assay

(ELISA). The cumulative amount of BMP-2 released at the preselected times

is shown in the table below. The data in the table below are also given in

bmp2.mat|dat|xlsx.

Time (hours) BMP-2

4 11.07 11.74 10.44 10.78 10.62 10.67 10.47

16 13.28 14.35 13.32 14.22 13.73 14.22 13.03

24 13.89 14.68 15.26 15.23 15.50 15.20 15.34

40 16.00 15.31 14.95 15.15 14.49 16.25 15.89

48 15.26 15.91 16.07 16.32 16.91 15.36 14.92

72 15.46 16.77 17.87 16.45 16.36 16.20 16.13

120 16.87 16.89 16.87 16.82 18.27 18.05

From the scatterplot in Figure 16.1(b) it is evident that a linear fit, with

time as a covariate and BMP2 as a response, is inadequate.

(a) Transform time to lt=log(time), and inspect the scatterplot of BMP2

against lt. Find the 95% confidence interval for the correlation between lt

and BMP2, and comment on the adequacy of linear regression now.

(b) Find the linear relationship

BMP2 = b0 + b1 * lt,

where b0 and b1 are estimators of the population intercept and slope, β0 and

β1. The error ǫ in the population equation BMP2 = β0 +β1lt+ ǫ, is assumed

normal with mean 0 and variance σ2. What is the estimator of this variance?

(c) If you are to predict the BMP2 at time = 100, what are the 95% CIs for

(1) a response in a single future experiment, and for (2) an average response.

Comment why the intervals are not identical? [Find the intervals. Explain

their difference in one or two sentences].
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% y=[...
% 11.07 11.74 10.44 10.78 10.62 10.67 10.47 ...
% 13.28 14.35 13.32 14.22 13.73 14.22 13.03 ...
% 13.89 14.68 15.26 15.23 15.50 15.20 15.34 ...
% 16.00 15.31 14.95 15.15 14.49 16.25 15.89 ...
% 15.26 15.91 16.07 16.32 16.91 15.36 14.92 ...
% 15.46 16.77 17.87 16.45 16.36 16.20 16.13 ...
% 16.87 16.89 16.87 16.82 18.27 18.05 ];
%
% x=[ 4 4 4 4 4 4 4 16 16 16 16 16 16 16 ...
% 24 24 24 24 24 24 24 40 40 40 40 40 40 40 ...
% 48 48 48 48 48 48 48 72 72 72 72 72 72 72 ...
% 120 120 120 120 120 120];
%
close all
load ’bmp2.mat’
x = bmp2(:,1);
y=bmp2(:,2);
%(a)
lt = log(x);
[r pval lb ub] = corrcoef(lt, y)

% r =1.0000 0.9528
% 0.9528 1.0000
%
% lb = 1.0000 0.9169
% 0.9169 1.0000
%
% ub = 1.0000 0.9734
% 0.9734 1.0000
%
%(a) by hand
r=corr(lt, y) % r =0.9528
%fisherz = @(x) 1/2*log( (1+x)/(1-x) );
w = 1/2 * log( (1+r)/(1-r)) % w =1.8616
n=length(y) % n =48
LB = w - norminv(1-0.05/2) / sqrt(n-3) % LB = 1.5694
UB = w + norminv(1-0.05/2) / sqrt(n-3) % UB = 2.1537
%invfisherz = @(x) (exp(2 * x) - 1)/(exp(2 * x) + 1)
L=(exp(2*LB)- 1)/(exp(2*LB)+ 1) % L = 0.9169
U=(exp(2*UB)- 1)/(exp(2*UB)+ 1) % U = 0.9734

%(b)

[b] = regress(y,[ones(size(y)) lt])

stats= regstats(y, [lt]); % 0.9079 453.3008 0.0000 0.4021

newx = log(100);
n = length(lt);
% Sums of Squares
SXX = sum( (lt - mean(lt)).^2 ) %SXX=50.5530
y_newx = b(1) + b(2) * newx %17.1912
sym = stats.mse * sqrt(1/n + (mean(lt) - newx)^2/SXX )
%st.dev. for mean response, sym = 0.0898

syp = stats.mse * sqrt(1 + 1/n + (mean(lt) - newx)^2/SXX )
%st.dev. for the prediction syp = 0.4120

alpha = 0.05;
%mean response interval
lbym = y_newx - tinv(1-alpha/2, n-2) * sym;
rbym = y_newx + tinv(1-alpha/2, n-2) * sym;
[lbym rbym] % 17.0105 17.3719

% prediction interval
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lbyp = y_newx - tinv(1-alpha/2, n-2) * syp;
rbyp = y_newx + tinv(1-alpha/2, n-2) * syp;
[lbyp rbyp] % 16.3619 18.0205





Chapter 17

Regression for Binary and Count Data

17.1 Blood Presure and Heart Disease.

TBA

17.2 Blood Presure and Heart Disease in WinBUGS.

Hint: Beetles Example may help in setting up BUGS code.

TBA

17.3 Sex of Turtles and Incubation Temperature.

TBA

17.4 Health Promotion.

TBA

17.5 PONV.

TBA

17.6 Mannose-6-phosphate Isomerase.

TBA

17.7 Arthritis Treatment Data.

%arthritis2.m

load ’arthritis2.dat’

caseid = arthritis2(:,1);

treatment = arthritis2(:,2);

gender = arthritis2(:,3);

age = arthritis2(:,4);

improve = arthritis2(:,5);

125
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improve01 = arthritis2(:,5)>0 ;

X = [treatment gender age];

[betas, deviance, stats]=glmfit(X,improve01,’binomial’,’link’,’comploglog’)

figure(1)

score = betas(1) + betas(2)*treatment + betas(3)*gender + betas(4)* age;

plot(score, improve01,’o’,...

’MarkerSize’,msize, ’MarkerEdgeColor’,’k’, ’MarkerFaceColor’,’g’)

xx = -2.7:0.01:1.4;

imp = 1 - exp(- exp(xx) );

hold on

plot(xx, imp,’r-’,’LineWidth’,lw)

xlabel(’Score’)

ylabel(’Probability of Improving’)

[betas2, deviance2, stats2]=glmfit(X,improve01,’binomial’,’link’,’logit’)

[betas3, deviance3, stats3]=glmfit(X,improve01,’binomial’,’link’,’probit’)

score2 = betas2(1) + betas2(2)*treatment + betas2(3)*gender + betas2(4)* age;

score3 = betas3(1) + betas3(2)*treatment + betas3(3)*gender + betas3(4)* age;

imp = 1 - exp(- exp(score) );

imp2 = exp(score2)./(1 + exp(score2));

imp3 = normcdf(score3);

plot(score, imp,’r*’)

hold on

plot(score2, imp2,’ko’)

plot(score3, imp3,’bd’)

xlabel(’scores’)

ylabel(’fits’)

legend(’cloglog’,’logit’,’probit’,2)

deviance %92.0751

deviance2 %92.0628

deviance3 %91.9286

17.8 Third-degree Burns.

TBA

17.9 Diabetes Data.
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TBA

17.10 Remission Ratios over Time.

TBA

17.11 Death of Sprayed Flour Beetles.

TBA

17.12 Mortality in Swiss White Mice.

TBA

17.13 Kyphosis Data.

TBA

17.14 Prostate Cancer.

TBA

17.15 Pediculosis Capitis.

TBA

17.16 Finney Data.

TBA

17.17 Shocks.

TBA

17.18 Ants.

TBA

17.19 Sharp Dissections and Postoperative Adhesions Revisited.

TBA

17.20 Airfreight breakage.

TBA

17.21 Body Fat Affecting Accuracy of Heart Rate Monitors .

TBA

17.22 Miller Lumber Company Customer Survey.

TBA

17.23 SO2,NO2, and Hospital Admissions .
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TBA

17.24 Kidney Stones.

TBA

17.1 Additional Problems

17.a1 Bumpus’ Sparrows Data. After an unusually severe storm in Febru-

ary of 1898, a number of house sparrows, Passer domesticus, were brought

to the Anatomical Laboratory of Brown University, Providence, Rhode Island.

Seventy-two of these birds revived; sixty-four perished. This event is described

by Hermon Carey Bumpus, the first PhD graduate of Clark University, whose

paper (Bumpus, 1898) has served as an example of natural selection in action.

The data set provided by Bumpus included several anatomic measurements

on 136 birds (as data structure bumpus.mat) and had been analyzed since by

many diverse researches.

sex 1 = male; 2 = female

surv 1 if survived, 0 if perished

lbt Length (mm) from tip of the beak to the tip of the tail

ae Alar extent (mm) from tip to tip of the extended wings

wei Weight (g)

lbh Length of beak and head (mm), from tip of the beak to the occiput

hum Length of Humerus [arm/wing bone] (in)

fem Length of Femur [thigh bone] (in)

tib Length of Tibiotarsus [leg bone linked to femur] (in)

wos Width of Skull (in), from the postorbital bone of one side to the postorbital

bone of the other

kos Length of Keel of Sternum [an extension of breastbone] (in)

By using logistic regression, model the probability of survival for male

sparrows (sex = 1) using the covariates lbt, ae, wei, lbh, hum, fem,

tib, wos, and kos.

There is an agreement that lighter and shorter birds have a higher chance

of survival. How is this reflected in your model?

• Bumpus, H. C. (1898) The elimination of the unfit as illustrated by the

introduced sparrow, Passer domesticus. Biological Lectures at Woods Hole Ma-

rine Biological Laboratory, 11th Lecture, 209–225.

TBA
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3. Wisconsin Diagnostic Breast Cancer (WDBC). Wolberg, Street, and

Mangasarian, from the University of Wisconsin,1 were interested in machine

learning in diagnosing breast cancer from fine-needle aspirates.

The data set wdbc.mat constitutes a matrix wdbc with 569 rows (subjects)

of which 357 correspond to controls and 212 to cancer. The matrix has 31

columns: column 1 is diagnosis (0 = control, 1 = cancer), while the columns

2-31 contain 30 features. The features are computed from a digitized image of

a fine needle aspirate (FNA) of a breast mass, see Figure 17.1. They describe

characteristics of the cell nuclei present in the image.

Variable Mean S.Error Extreme

Radius (average distance from the center) Col 2 Col 12 Col 22

Texture (standard deviation of gray-scale values) Col 3 Col 13 Col 23

Perimeter Col 4 Col 14 Col 24

Area Col 5 Col 15 Col 25

Smoothness (local variation in radius lengths) Col 6 Col 16 Col 26

Compactness (perimeter2 / area - 1.0) Col 7 Col 17 Col 27

Concavity (severity of concave portions of the contour) Col 8 Col 18 Col 28

Concave points (number of concave portions of the contour) Col 9 Col 19 Col 29

Symmetry Col 10 Col 20 Col 30

Fractal dimension (“coastline approximation” - 1) Col 11 Col 21 Col 31

The mean, standard error, and extreme (largest) of nuclei measures were

computed for each image, resulting in 30 features. For instance, column 2 is

Mean Radius, column 12 is Radius Standard Error, column 22 is Extreme

Radius.

Fig. 17.1 FNA: A digitized image of a fine needle aspirate of a breast mass.

1 Wolberg, W. H., Street, W. N., and O.L. Mangasarian, O. L., (1994). Machine learning

techniques to diagnose breast cancer from fine-needle aspirates. Cancer Letters, 77 (1994)

163-171.

Wolberg, W. H., Street, W. N., and O.L. Mangasarian, O. L., (1995). Image analysis and

machine learning applied to breast cancer diagnosis and prognosis. Analytical and Quanti-

tative Cytology and Histology, 17, 2, 77–87.
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(a) Propose a logistic regression model in which the incidence of malignancy

is regressed on Mean Texture (3rd column), Extreme Area (25th column), and

Extreme Smoothness (26th column). These three covariates are recommended

by the authors as good separating variables.

(b) Find the probability of malignancy suggested by the model in (a) for a

new case where Mean Texture, Extreme Area, and Extreme Smoothness, are

21.423, 654.787, and 0.118, respectively.

%WDBC

load ’wdbc.mat’

%

Y = wdbc(:,1);

X = wdbc(:,[3 25 26]); %Design matrix n x (p-1) without

% vector of 1’s (intercept)

Xdes =[ones(size(Y)) X]; %with the intercept: n x p

[n p] = size(Xdes);

alpha = 0.05; %alpha for CIs

[b, dev, stats]=glmfit(X,Y, ’binomial’,’link’,’logit’);

lin = Xdes * b; %linear predictor, n x 1 vector

newperson= [1 21.423 654.787 0.118];

newlin = newperson * b % -0.2020

prob = exp(newlin)/( 1 + exp(newlin) ) %0.4497

figure(1)

plot(lin, Y,’o’,’MarkerSize’,msize,...

’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’g’)

xx = -2:0.01:1;

mp = exp(xx)./(1 + exp(xx));

hold on

plot(xx, mp,’r-’,’LineWidth’,lw)

plot( [newlin newlin],[0 prob],’r:’)

plot([-2 newlin],[prob prob],’r:’)

axis([-2 1 0 1])

xlabel(’Linear Predictor’,’Interpreter’,’LaTeX’)

ylabel(’Probability of Cancer’,’Interpreter’,’LaTeX’)

legend(’Observations’,’Logistic Fit’,2)



Chapter 18

Inference for Censored Data and Survival

Analysis

18.1 Simulation of Censoring.

%survival1.m

y = exprnd(10,50,1); % Random failure times exponential(10)

d = exprnd(20,50,1); % Drop-out times exponential(20)

t = min(y,d); % Observe the minimum of these times

censored = (y>d); % Observe whether the subject failed

% Calculate and plot empirical cdf and confidence bounds

[f,x,flo,fup] = ecdf(t,’censoring’,censored);

stairs(x,f,’LineWidth’,2)

hold on

stairs(x,flo,’r:’,’LineWidth’,2)

stairs(x,fup,’r:’,’LineWidth’,2)

% Superimpose a plot of the known population cdf

xx = 0:.1:max(t);

yy = 1-exp(-xx/10);

plot(xx,yy,’g-’,’LineWidth’,2)

legend(’Empirical’,’LCB’,’UCB’,’Population’,...

’Location’,’SE’)

hold off

18.2 Immunoperoxidase.

The 95% intervals are [0.0021,0.0063] for the first approximation, and [0.0026,0.0069]

for the second.

The following is added to the MATLAB script in Example ??:

z0975 = norminv(0.975);

[hatlam1 - z0975* hatlam1/sqrt(k1), hatlam1 + z0975* hatlam1/sqrt(k1)]

%0.0021 0.0063

exp([log(lambdahat1) - z0975*sqrt(1/k1) ...
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log(lambdahat1) + z0975*sqrt(1/k1)])

%0.0026 0.0069

Note that the confidence interval found by MATLAB on the scale parameter was [153.6769,415.7289].

By taking the reciprocals, an alternative confidence interval is [0.0024,0.0065].

18.3 Massachusetts Data.

TBA

18.4 Expected Life-time.

T is non-negative. Start with ET =
∫∞

0 t f (t)dt and take u = t and dv = f (t)dt. But

dv = f (t)dt = d(F(t))= d(1−S(t))= d(−S(t)) → v =−S(t).

Now, ET = uv‖∞0 −
∫∞

0 (−S(t))dt =
∫∞

0 S(t)dt.

18.5 Censored Rayleigh.

TBA

18.6 MLE for Equally Censored Data.

TBA

18.7 Malignant Melanoma.

TBA

18.8 Rayleigh Survival Times.

(a) The cdf for Rayleigh distribution is F(t)= 1− e−λt2
and S(t)= e−λt2

so that

h(t)=
f (x)

S(t)
= 2λt.

(b) The mean survival time is µ= 1
2

√

π
λ

. (c) As Example ??. (d) The hazard is linear function

of the parameter, thus the parameter is substituted by its Bayes estimator. For the survival

function one can use the fact that the moment generating function for T ∼Ga(α,β) is

EetT =
(

1− t/β
)−α

.

18.9 Western White Clematis.

TBA



Chapter 19

BUGS

19.1 A Coin and a Die.

#coin.bug:

model coin;

{

flip12 ~ dcat(p.coin[])

coin <- flip12 - 1

}

#coin.dat:

list(p.coin=c(0.5, 0.5))

# just generate initials

19.2 Paradox DeMere in WinBUGS.

The solution to the “paradox” deMere is simple. By taking into account all

possible permutations of the above triples the sum 11 has 27 favorable permu-

tations while the sum 12 has 25 favorable permutation.

But what if 300 fair dice are rolled and we are interested if the sum 1111 is

advantageous to the sum 1112? Exact solution is unappealing, but the proba-

bilities can be well approximated by WinBUGS model demere1.

model demere1;

{

for (i in 1:300) {

dice[i] ~ dcat(p.dice[]);

}

is1111 <- equals(sum(dice[]),1111)
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is1112 <- equals(sum(dice[]),1112)

}

DATA

list(p.dice=c(0.1666666, 0.1666666,

0.1666667, 0.1666667, 0.1666667, 0.1666667) )

The initial values are generated. After five million rolls, WinBUGS outputs

is1111 = 0.0016 and is1112 = 0.0015, so the sum of 1111 is advantageous

to the sum of 1112.

19.3 Simulating Probability of an Interval.

(a) 1/e - 1/eˆ1.6 ans =0.165982923176787

(b) Recall that MATLAB parametrizes with scale parameter 1/λ = 10, so

expcdf(16, 10) - expcdf(10,10) ans = 0.165982923176787

(c)

model{

theta ~ dexp(0.1)

P <- step(theta-10)*step(16-theta)

}

There is no data to load in, and after checking the model in the Model’s

Specification Tool one proceeds directly to compiling. Also, the WinBUGS will

generate a starting point for the MCMC iteration. The result after total of

10,000,000 iterations is

mean sd MCerror val2.5pc median val97.5pc start sample

P 0.1659 0.372 1.169E-4 0.0 0.0 1.0 1001 9999000

19.4 WinBUGS as a Calculator.

The solution is given by the following code

model{

F(x) <- sin(x)

int <- integral(F(x), 0, pi, 1.0E-6)

pi<- 3.141592659

y0 <- solution(F(y), 1,2, 1.0E-6)

F(y) <- pow(y,5) - 2*y

zero <- pow(y0, 5)-2*y0

randint <- integral(F(z), 0, randbound, 1.0E-6)

F(z) <- pow(z,3)*(1-pow(z,4))

randbound ~ dbeta(2,2)

}
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NO DATA

INITS

list(x =1, y=0, z=NA,randbound=0.5)

After model checking, one should go directly to compiling (no data to load

in) and to initializing the model. There is NO need to update the model or

to go to Inference tool, set variables for monitoring and sample. One simply

goes to Info menu and checks Node Info. In the Node Info Tool one specifies

int for the approximation of integral, y0 for the solution of equation, zero for

checking that y0 satisfies the equation (approximately), and randint for the

value of random interval.


