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Preface

This Manual provides solutions and hints to some of the exerc ises and con-
stitutes a “living” document. Over time more hints and solut ions will be added
– these additions are always welcome by the students.

If you �nd an error or have a suggestion for improvement pleas e do not
hesitate to send an email.

BRANI V IDAKOVIC

brani@bme.gatech.edu
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Chapter 2

Sample and Its Properties

2.1 Auditory Cortex Spikes.
See �le spikes.m .

2.2 On Average.
The averages are: mean=85.5K, geometric mean=41.2K, media n = 30K,

harmonic mean=29.3K, and mode=20K. The advertising strate gy in which
the average salary of 85.5K is quoted will be misleading sinc e a newly hired
worker is likely to have a salary less than or equal to the medi an, most likely
the mode.

2.3 Contraharmonic mean and f -mean.

(a)2 X1ÅX2
2 ¡ 2

1/X1Å1/X2
ÆX1 Å X2 ¡ 2X1 X2

X1ÅX2
Æ

X 2
1ÅX 2

2
X1ÅX2

.

(b) C(x, x, x, . . . , x) Ænx2

nx Æx.
(c) For functions f (x) Æx, f (x) Æ1/x, f (x) Æxk , and f (x) Ælog(x), the inverse

functions are f ¡ 1(x) Æx, f ¡ 1(x) Æ1/x, f ¡ 1(x) Æx1/k , and f (x) Æexp(x). Substitu-
tion and algebra verify (c). For example, if f (x) Ælog(x),

X f Æexp

(
1

n

nX

iÆ1
log X i

)

Æexp

(

log

Ã
nY

iÆ1
X 1/n

i

!)

Æ
nY

iÆ1
X 1/n

i .

2.4 Mushrooms.
The following MATLAB �le provides the solution:

amanita = [9.2, 8.8, 9.1, 10.1,...
8.5, 8.4, 9.3, 8.7,...
9.7, 9.9, 8.4, 8.6,...
8.0, 9.5, 8.8, 8.1,...
8.3, 9.0, 8.2, 8.6,...

1
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9.0, 8.7, 9.1, 9.2,...
7.9, 8.6, 9.0, 9.1,...
9.2, 8.8, 9.1, 10.1];

%(a)
fivens = [min(amanita) prctile(amanita,25) ...
median(amanita) prctile(amanita,75) max(amanita)]
% fivens =
% 7.9000 8.5500 8.9000 9.2000 10.1000

%(b)
[mean(amanita) mode(amanita)]
% 8.9063 9.1000

%(c)
zis = zscore(amanita);
hist(zis,15)

2.5 Manipulations with sums.
TBA

2.6 Emergency Calculation.
Since n Æ12 and X̄ Æ15,

P 12
iÆ1 X i Æ180. After the correction, the sum is

192. Thus, ( X̄ )new Æ192/12 Æ16.
From s2 Æ 1

n¡ 1

¡P n
iÆ1 X 2

i ¡ n(X̄ )2
¢

it follows that

nX

iÆ1
X 2

i Æ(n ¡ 1)s2 Å n(X̄ )2.

This gives
P 12

iÆ1 X 2
i Æ11 ¢34 Å 12 ¢152 Æ3074. After adjusting for the error,

(
P 12

iÆ1 X 2
i )new Æ3074 ¡ 42 Å 162 Æ3314, and (s2)new Æ 1

11

¡
3314 ¡ 12¢162

¢
Æ22.

Thus, the corrected values are ( X̄ )new Æ16 and (s2)new Æ22.

2.7 Sample Mean and Standard Deviation After a Change.
The following MATLAB �le provides the solution

%sumy -> sum(y _i):old
%sumynew -> sum(y _i): new
%sumy2 -> sum(y _i^2): old
%sumy2new -> sum(y _i^2): new
%NEED: ybarnew and synew

sumy = 15 * 11.6;
sumynew = sumy - 7 + 10;
ybarnew = sumynew/14;

%recall sy = sqrt(1/14 (sumy2 - 15 * 11.6^2) )
sumy2 = 14 * (4.4045)^2 + 15 * 11.6^2;
% now n=15 drops to n=14...
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sumynew2 = sumy2 - 49 + 300; %300=20^2 - 10^2
synew = sqrt( 1/13 * (sumynew2 - 14 * ybarnew^2 ) )
disp(' New ybar New sy ')
disp( [ybarnew synew] )
% New ybar New sy
% 12.6429 4.8295

2.8 Surveys on Different Scales.

%Surveys on Different Scales
surUK =[6, 7, 5, 10, 3, 9, 9, 6, 8, 2, 7, 5];
surUS =[67, 65, 95, 86, 44, 100, 85, 92, 91, 65];

CVUK = std(surUK)/mean(surUK);
CVUS = std(surUS)/mean(surUS);
disp(' CVUK CVUS')
disp([CVUK CVUS])
% CVUK CVUS
% 0.3786 0.2255

The UK survey is substantially more variable than the US surv ey.

2.9 Merging Two samples.
Let Z i be the values of the merged sample,

(Z1, Z2, . . . , Zm , ZmÅ1, . . . , ZmÅn ) Æ(X1, . . . , X m ,Y1, . . . ,Yn ).

Then,

Z̄ Æ
1

m Å n

mÅnX

iÆ1
Z i Æ

1

m Å n

Ã
mX

iÆ1
X i Å

nX

iÆ1
Yi

!

Æ
1

m Å n
(mX̄ Å nȲ ).

s2
Z Æ

1

m Å n ¡ 1

mÅnX

iÆ1
(Z i ¡ Z̄ )2

Æ
1

m Å n ¡ 1

Ã
mX

iÆ1
(X i ¡ X̄ Å X̄ ¡ Z̄ )2 Å

nX

iÆ1
(yi ¡ Ȳ Å Ȳ ¡ Z̄ )2

!

.

Since

mX

iÆ1
(X i ¡ X̄ )(X̄ ¡ Z̄ ) Æ(X̄ ¡ Z̄ )

mX

iÆ1
(X i ¡ X̄ ) Æ0 and

nX

iÆ1
(Yi ¡ Ȳ )(Ȳ ¡ Z̄ ) Æ0,

then

(m Å n ¡ 1)s2
Z Æ(m ¡ 1)s2

X Å m(X̄ ¡ Z̄ )2 Å (n ¡ 1)s2
Y Å n(Ȳ ¡ Z̄ )2.
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The relation for s2
Z follows, since

m(X̄ ¡ Z̄ )2 Å n(Ȳ ¡ Z̄ )2 Æm
n2(X̄ ¡ Ȳ )2

(m Å n)2
Å n

m2(X̄ ¡ Ȳ )2

(m Å n)2
Æ

mn

m Å n
(X̄ ¡ Ȳ )2.

2.10 Fitting the Histogram.

load('fat.dat')
broz = fat(:,2);
histfit(broz)
h = get(gca,'Children');
set(h(2),'FaceColor',[.5 .9 1])

-10 0 10 20 30 40 50
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30
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40

Fig. 2.1 Histogram of Brozek index broz overlaid by best �tting Gaussian curve.

2.11 QT Syndrome.
Hint: QT is considered prolonged if it exceeds 440 ms.

2.12 Blow�y Count Time Series.
TBA

2.13 Simpson's Diversity Index.
Pure function Eh in Example 2.3 should be replaced by

Ed = @(f) (sum(f))2/(sum(f.2) * length(f)) .
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The result is Ed(br) = 0.4565, Ed(in) = 0.4602, Ed(no) = 0.4078, and

Ed(us) = 0.4429, and the sample from India is the most homogeneous ac-
cording to Simpson's homogeneity index.

2.14 Speed of Light.

%Clean the outliers if any%
irange = iqr(light);
q1 = prctile(light, 25);
q3 = prctile(light, 75);
out1 = find(light < q1 - 2.5 * irange)

%indices for outliers smaller than q1-2.5 * iqr
out3 = find(light > q3 + 2.5 * irange)

%indices for outliers larger than q3+2.5 * iqr
lightc = light(setdiff((1:length(light)), union(out1,o ut3)))
%take indices (1:length(light)) minus (out1 union out3),
% so the outlier indices are excluded

%mean, 20% trimmed mean, Real MAD, std, variance
meli = mean(lightc)
tm20 = trimmean(lightc,20)
realmad = 1/0.6745 * mad(lightc,1)
std(lightc)
var(lightc)

figure(1)
% histogram with 30 bins
hist(lightc, 30)

figure(2)
histn(lightc,15,3,42);
hold on
[f,x,u] = ksdensity(lightc);
plot(x,f,'r-','linewidth', lw)
title('Density estimate for the cleaned light data')

2.15 Limestone Formations in Jamaica.
After loading data limestone.dat the command

glyphplot(limestone,'glyph','face','grid',[3, 6]) produces �gure 2.3.

2.16 Duchenne Muscular Dystrophy.
TBA

2.17 Ashton's Dental Data.
TBA

2.18 Andrews Plots of Iris Data. TBA

2.19 Cork Boring Data.
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Density estimate for "cleaned" light data
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Fig. 2.2 (a) hist(lightc, 30) ; (b) histn(lightc,15,3,42); hold on; [f,x,u] =
ksdensity(lightc); plot(x,f,'r-','linewidth', 3)

 1  2  3  4  5  6

 7  8  9 10 11 12

13 14 15 16 17 18

Fig. 2.3 Chernoff faces from limestone data.

See corkrao.m .

2.20 Balance.
See balances.m .

2.21 Cats.
TBA

2.22 BUPA Liver Data.
TBA

2.23 Cell Circularity Data.
TBA
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2.1 Additional Problems

2.a1 Aspirin Weights. Stoodley (1984) provides 100 weights of aspirin
tablets determined using laboratory balance and rounded to the nearest mg.
The data in aspirin.dat are given as a simple sample.

(a) Simplify this sample using frequencies of the measureme nts.
(b) Find location and spread measures of the sample.
(c) Plot the histogram of the z-scores.
[Stoodley, K. (1984). Applied and Computational Statistics, A First Course .

Ellis Horwood LTD, Chichester, England, 229pp.]





Chapter 3

Probability, Conditional Probability, and
Bayes Formula

3.1 Event Differences.
TBA

3.2. Inclusion-Exclusion principle in MATLAB.
Hint. For example, MATLAB commands

numbers = 1:N; A = sum(mod(numbers, 3) == 0);

will count how many numbers in {1, . . . ,N } are divisible by 3. Find appropri-
ate counts and apply the inclusion-exclusion principle to � nd the number of
favorable outcomes.

3.3 A Complex Circuit.
TBA

3.4 De Mere Paradoxes.
TBA

3.5 Probabilities of Some Composite Events.
TBA

3.6 Deighton's Novel.

(ii)Ans. 63.6%

3.7 Reliable System from Unreliable Components.
(a) The components should be connected in parallel fashion s ince this in-

creases the reliability.
(b) If single element works or fails with probabilities p or q, and if the

system S has n parallel components, then the probability of S failing is sS Æ

9
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qn . At least nine components are needed, since qS Æ0.29 Æ5.12£ 10¡ 7 Ç 10¡ 6.
Eight components will not be suf�cient since 0 .28 Æ2.56£ 10¡ 6 È 10¡ 6.

3.8 k-out-of- n Systems.
A 2-out-of-4 system fails if no or only one component work. If pi are

probabilities of work and qi are complementary probabilities, then probability
of system not working is

p1=0.1; p2=0.8; p3=0.5; p4=0.4;
q1=0.9; q2=0.2; q3=0.5; q4=0.6;
q=q1 * q2* q3* q4 + p1 * q2* q3* q4+...
q1* p2* q3* q4 + q1 * q2* p3* q4 + q1 * q2* q3* p4;
%0.3660

Thus, the system works with the probability of 0.3660.

3.9 Number of Dominos.
Solution for (a) is 10 by counting {(0,0),(0,1),(0,2), (0,3),(1,1), (1,2),

(1,3),(2,2), (2,3),(3,3)} or by using combinations with repetition
¡4Å2¡ 1

2

¢
Æ10.

3.10 Counting Protocols. TBA

3.11 Correlation Between Events.
The denominators are identical. P(Ac \ B c) ¡ P(Ac)P(B c) Æ1 ¡ P(A [ B) ¡

(1 ¡ P(A))(1 ¡ P(B)) ÆP(A \ B) ¡ P(A)P(B).

3.12 A Fair Gamble with a Possibly Loaded Coin.
(a) Yes, one can simulate perfectly fair game with a biased co in. Flip the

coin twice, ignore TT, HH outcomes and declare “heads” if you see HT and
“tails” if you see TH. The probabilities of these two outcome s are identical,
p(1 ¡ p) each.

If one conditions on the event that the outcomes on the two coi ns are differ-
ent, these equal probabilities become 1/2 each. For any coin , possibly biased,
with P(H ) Æp 6Æ1/2, P(HT jHT orTH ) ÆP(TH jHT orTH ) Æ p(1¡ p)

2p(1¡ p) Æ1/2.
Therefore a biased coin can emulate a fair coin, but at least t wo �ips are

needed to produce a “fair �ip.”
(b) To emulate fair die �ip the coin 4 times and consider only t he cases when

you observe 2 H and 2 T. If different number of H and T are obtain ed, ignore
that case and �ip the coin again.

There are 6 possibilities: HHTT, HTHT, HTTH, THHT, THTH, and TTHH.
Each has the probability p2(1 ¡ p)2, but conditioned on the event “two heads
and two tails,” each outcome has the probability

p2q2

¡4
2

¢
p2q2

Æ1/6.
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Now assign
�

to HHTT,
�

to HTHT, . . . ,



to TTHH.

3.13 Neural Signal.
Denote by A the event that neuron �res, and with B that it �res in the

time interval [0 , t], t Ç T . Then P(A jB c) ÆP(BcjA)P(A)
P(Bc) Æ

T ¡ t
T p

T ¡ t
T pÅ1(1¡ p)

Æ(1¡ t /T )p
1¡ t /T p .

3.14 Guessing.
Let SR and SG be the events that the subject guesses Red and Green,

and let LR and LG be the events that the light �ashes red and green, respec-
tively. The subject's guess and the light color are independ ent and P(SR jLR ) Æ
P(SR jLG ) ÆP(SR) Æ0.7 and P(SGjLR ) ÆP(SGjLG ) ÆP(SG) Æ0.3. Also,
P(LR ) Æ0.7 and P(LG ) Æ0.3.

(i) Let C be the event that the subject guesses correctly. By the rule o f total
probability,

P(C) ÆP(CjLR )P(LR )Å P(CjLG )P(LG )

ÆP(SR jLR )P(LR )Å P(SGjLG )P(LG )

ÆP(SR)P(LR )Å P(SG)P(LG ) Æ0.32 Å 0.72 Æ0.58.

(ii)

P(LR jC) Æ
P(CjLR )P(LR )

P(C)
Æ

P(SR)P(LR )

P(C)
Æ

0.32

0.32 Å 0.72
Æ0.04655.

3.15 Propagation of Genes. TBA

3.16 Easy Conditioning.
TBA

3.17 Eye Color.

Since Megan has blue eyes and both parents are brown-eyed, th en the par-
ents are both Bb . Without any information on Megan sister's phenotype, the
distribution of her allele pairs would be

BB Bb bb
probs 1/4 1/2 1/4

However, since we know that Megan's sister has brown eyes, th en the con-
ditional probabilities are calculated as

P({BB }j{BB, Bb }) Æ
P({BB } \ {BB, Bb })

P({BB, Bb })
Æ

P({BB })

P({BB, Bb })
Æ

1/4

3/4
Æ1/3.
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Similarly, P({Bb }j{BB, Bb }) Æ2/3 and P({bb }j{BB, Bb }) Æ0.
Thus, after information about Megan sister's phenotype her genotype dis-

tribution is

BB Bb bb
probs 1/3 2/3 0

Megan sister's husband allays passes b allele, and the child will be blue-
eyed only if Megan's sister passes allele b. This happens with probability

P({Megan's sister is Bb })£ P({b is passed from Bb ) Æ2/3£ 1/2 Æ 1/3

3.18 Dice.
Denote with A the event that in 10 rolls there is at least one




and with

B that there are at least two



. Then,

P(B jA) Æ1 ¡ P(B cjA) Æ1 ¡ P(AB c)/P(A) Æ1 ¡
10£ 1/6£ (5/6)9

1 ¡ (5/6)10
Æ0.6148.

3.19 In�ation and Unemployment.

U
Hi Low Marg

I
Hi 0.16 0.24 0.4

Low 0.36 0.24 0.6
Marg 0.52 0.48 1

(a) P(IH ) ÆP((IH \ UH ) [ (IH \ UL )) ÆP(IH \ UH ) Å P(IH \ UL ) Æ0.16 Å
0.24 Æ0.40.

(b) P(IH jUH ) ÆP(IH \ UH )
P(UH ) Æ0.16/0.52 Æ0.30769.

(c) Dependent. For example 0 .16 ÆP(IH \ UH ) 6ÆP(IH ) £ P(UH ) Æ0.4 £
0.52 Æ0.208.

3.20 Multiple Choice.
Let H 1 be the hypothesis that the student knows the question and H 2 Æ

H c
1. It is given that P(H 1) Æ0.8 and P(H 2) Æ0.2. Denote by A the event that the

student answers the question correctly. Then, P(A jH 1) Æ1 and P(A jH 2) Æ0.25.
Using the rule of total probability, the required probabili ty in (i) is

P(A) ÆP(A jH 1)P(H 1)Å P(A jH 2)P(H 2) Æ1¢0.8Å 0.2¢0.25 Æ0.85.

In (ii) we are interested in P(H 1jA) and this can be found using Bayes' rule.

P(H 1jA) Æ
P(A jH 1)P(H 1)

P(A)
Æ

0.8

0.85
Æ0.9412.
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3.21 Manufacturing Bayes.
Let A be the event that the randomly selected item is conforming an d

let H 1,H 2, and H 3 be the events (hypotheses) that the item is produced on
the machine-type 1, 2, or 3. >From the description of the prob lem, P(A jH 1) Æ
0.94, P(A jH 2) Æ0.95, and P(A jH 3) Æ0.97. From the distribution of total pro-
duction among the machine types, it follows that P(H 1) Æ0.3, P(H 2) Æ0.5, and
P(H 3) Æ0.2. Note that P(H 1)Å P(H 2)Å P(H 3) Æ1.

The probability in (i) is found by the Rule of Total Probabili ty:

P(A) ÆP(A jH 1)P(H 1)Å P(A jH 2)P(H 2)Å P(A jH 3)P(H 3)

Æ0.94£ 0.3Å 0.95£ 0.5Å 0.97£ 0.2 Æ0.9510.

The probability in (ii) in terms of A and H 1 is P(H 1jA). Its calculation requires
Bayes' rule,

P(H 1jA) Æ
P(A jH 1)P(H 1)

P(A)
Æ

0.94£ 0.3

0.9510
Æ0.2965.

Note that, if the item turned to be conforming, the posterior probability that it
was produced on type 1 machine is slightly less than the corre sponding prior
probability.

3.22 Stanley.
Denote with A the event that Stanley draws a favorable card (and conse-

quently passes the exam with an A).
(i) If he draws the card �rst, then clearly P(A) Æ8/20 Æ2/5.
(ii) If Stanley is second in line, then one card was taken by th e student

before him. That �rst card taken might have been favorable (h ypothesis H 1) or
unfavorable (hypothesis H 2). Obviously, the hypotheses H 1 and H 2 partition
the sample space since no other type of cards is possible in th is context. Also,
the probabilities of H 1 and H 2 are 8/20 and 12/20, respectively. Now, after
this �rst card has been taken, Stanley draws the second. If H 1 had happened,
the probability of A is 7/19, and if H 2 had happened, the probability of A is
8/19. Thus, P(A jH 1) Æ7/19 and P(A jH 2) Æ8/19. By the rule of total probability,
P(A) Æ7/19¢8/20Å 8/19¢12/20 Æ8/20 Æ2/5.

(iii) Stanley has the same probability of getting an A after two cards have
already been taken. The hypotheses are H 1={ both cards taken favorable },
H 2={ exactly one card favorable }, and H 3={ none of the cards taken favorable
}. P(H 1) Æ8/20¢7/19,P(H 3) Æ12/20¢11/19. and P(H 2) Æ1 ¡ P(H 1) ¡ P(H 3). Next,
P(A jH 1) Æ6/18,P(A jH 2) Æ7/18, and P(A jH 3) Æ8/18. Therefore, P(A) Æ6/18 ¢
7/19¢8/20Å 7/18¢(12¢16)/(19¢20)Å 8/18¢11/19¢12/20 Æ8/20 Æ2/5.

3.23 Kokomo, Indiana.
By Bayes' rule,
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P(liberal jdid not vote) Æ
(1 ¡ 0.65)£ 0.20

(1 ¡ 0.82)£ 0.65Å (1 ¡ 0.65)£ 0.20Å (1 ¡ 0.50)£ 0.15
Æ0.07/0.262 Æ0.26718.

3.24 Mysterious Transfer.
The solution requires using the rule of total probability, w here the event of

interest is A-a ball drawn from the second box is black, and the hypotheses are
H 1-transferred ball is white and H 2-transferred ball is black. By accounting
for the content of the �rst box, we �nd P(H 1) Æ4/7 and P(H 2) Æ3/7. The proba-
bility P(A jH 1) Æ5/9 since after the transfer there are 4 white and 5 black ball s
in the second box. Similarly, P(A jH 2) Æ6/9. (i) The probability of selecting a
black ball from the second box is

P(A) ÆP(A jH 1)P(H 1)Å P(A jH 2)P(H 2) Æ5/9£ 4/7Å 6/9£ 3/7 Æ38/63.

(ii) By Bayes' rule,

P(H 2jA) Æ
P(A jH 2)P(H 2)

P(A)
Æ

18/63

38/63
Æ9/19.

3.25 Two Masked Robbers.
Let R be the event that Mr. Smith is a robber and Rc its complement,

that is, Mr Smith is innocent. Let T be the event that the lie detector says
Mr. Smith is a robber, and T c its complement. It is given that P(T jR) Æ0.85
and P(T jRc) Æ0.08. We are interested in P(R jT ). The events R and Rc are
hypotheses and P(R jT ) can be found using Bayes' rule. First, by the rule of
total probability in which, for a randomly selected person a mong 40 people,
the detector indicates the person is a robber is

P(T ) ÆP(T jR)P(R)Å P(T jRc)P(Rc) Æ0.85£ 2/40Å 0.08£ 38/40 Æ0.1185.

By Bayes' rule,

P(R jT ) Æ
P(T jR)P(R)

P(T )
Æ(0.85£ 2/40)/0.1185 Æ0.38865.

The probability that Mr. Smith is a robber if the lie-detecto r said he was, is
less than 39%.

3.26 Information Channel.
Hint: P(ABCA ) ÆP(ABCA jAAAA )£ 0.3ÅP(ABCA jBBBB )£ 0.5ÅP(ABCA jCCCC)£

0.2. For example P(ABCA jBBBB ) Æ0.2£ 0.6£ 0.2£ 0.2. Apply Bayes' rule.
Sol.
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P(ABCA ) ÆP(ABCA jAAAA )£ 0.3Å P(ABCA jBBBB )£ 0.5Å P(ABCA jCCCC)£ 0.2

Æ0.62 ¢0.22 ¢0.3Å 0.6¢0.23 ¢0.5Å 0.6¢0.23 ¢0.2 Æ0.00768.

By Bayes' rule, P(AAAA jABCA ) Æ0.62 ¢0.22 ¢0.3/0.00768 Æ0.5625.
As an easy side result one can �nd P(BBBB jABCA )Æ0.3125 and P(CCCCjABCA ) Æ

0.125 and check that 0 .5625Å 0.3125Å 0.125 Æ1.

3.27 Quality Control.
TBA

3.28 Let's Make a Deal.
TBA

3.29 Ternary channel.

% prsissj means probability of received si if sent sj (given)
% prsi means probability of received si (question in (a))
% pssi means probability sent si (given 1/3 each)
% pssirsj means probability sent si if received sj (question in (b))
%
prs1ss1 = 0.75; prs2ss1 = 0.1; prs3ss1 = 0.15;
prs1ss2 = 0.098; prs2ss2 = 0.9; prs3ss2 = 0.002;
prs1ss3 = 0.02; prs2ss3 = 0.08; prs3ss3 = 0.9;

pss1 = 1/3; pss2 = 1/3; pss3 = 1/3;

%(a) total probabaility formula
prs1 = prs1ss1 * pss1 + prs1ss2 * pss2 + prs1ss3 * pss3 %0.2893
prs2 = prs2ss1 * pss1 + prs2ss2 * pss2 + prs2ss3 * pss3 %0.3600
prs3 = prs3ss1 * pss1 + prs3ss2 * pss2 + prs3ss3 * pss3 %0.3507

%(b) Bayes' formula
pss1rs1 = prs1ss1 * pss1/prs1 %0.8641
pss2rs1 = prs1ss2 * pss2/prs1 %0.1129
pss3rs1 = prs1ss3 * pss3/prs1 %0.0230

pss1rs2 = prs2ss1 * pss1/prs2 %0.0926
pss2rs2 = prs2ss2 * pss2/prs2 %0.8333
pss3rs2 = prs2ss3 * pss3/prs2 %0.0741

pss1rs3 = prs3ss1 * pss1/prs3 %0.1426
pss2rs3 = prs3ss2 * pss2/prs3 %0.0019
pss3rs3 = prs3ss3 * pss3/prs3 %0.8555

%0.8641 0.1129 0.0230
%0.0926 0.8333 0.0741
%0.1426 0.0019 0.8555
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3.30 Sprinkler Bayes Net.

model
cloudy ~ dcat(p.cloudy[]);
sprinkler ~ dcat(p.sprinkler[cloudy,]);
rain ~ dcat(p.rain[cloudy,]);
wetgrass ~ dcat(p.wetgrass[sprinkler,rain,])

list(
#hard evidence , uncomment and instantiate...
# sprinkler = 1,
# cloudy = 1,

rain = 1,
wetgrass = 2,

#initial distributions
p.cloudy = c(0.5,0.5),
# conditionals
p.sprinkler = structure(.Data = c(0.50, 0.50,

0.90, 0.10), .Dim = c(2,2)),
p.rain = structure(.Data = c(0.80, 0.20,

0.20, 0.80), .Dim = c(2,2)),
p.wetgrass = structure(.Data = c(1., 0.0,

0.1, 0.9,
0.1, 0.9,
0.01, 0.99), .Dim = c(2,2,2))

) #end list

3.31 Diabetes in Pima Indians Bayes Net.

model

pregnancies ~ dcat(p.pregnancies[]); #Multiple pregnancies?
age ~ dcat(p.age[]); #Older than 50%?
overweight ~ dcat(p.overweight[]); #Heavier than 50%?
diabetes ~ dcat(p.diabetes[pregnancies,age,overweight ,]);

#Diagnosed with diabetes?
glycose ~ dcat(p.glycose[diabetes,]); #Elevated glycose?
insulin ~ dcat(p.insulin[diabetes,]) #Elevated insulin?
bloodpressure ~ dcat(p.bloodpressure[overweight,diabe tes,]);

#High blood pressure

DATA



3.1 Additional Problems 17

list( #put hard evidence as 1 or 2, un-comment as needed
#pregnancies=2,
#age = 1,
#overweight=1,

diabetes=2,
#glycose = 1,
#insulin =2,
#bloodpressure=1,
#next are distributions of initial nodes:

p.pregnancies= c(0.45,0.55),
p.age = c(0.5, 0.5),
p.overweight = c(0.5, 0.5),

#the rest are conditional probability distributions:
p.diabetes = structure(.Data =

c(0.95,0.05, 0.67, 0.33,
0.59,0.41, 0.40, 0.60,
0.73,0.27, 0.66, 0.34,
0.63,0.37, 0.41, 0.60 ), .Dim = c(2,2,2,2)),
p.glycose = structure(.Data = c(0.64,0.36,0.21,0.79),

.Dim = c(2,2)),
p.insulin = structure(.Data = c(0.49,0.51,0.52,0.48),

.Dim = c(2,2)),
p.bloodpressure = structure(.Data = c(0.55,0.45,

0.58,0.42,
0.40,0.60,
0.49,0.51), .Dim = c(2,2,2))

Just Generate Initials by "gen inits"

3.32 A Simpli�ed Probabilistic Model for Visual Pathway.
TBA

3.1 Additional Problems

3.a1 Twins. Dizygotic (fraternal) twins have the same probability of ea ch
gender as in overall births, which is approximately 51% male , 49% female.
Monozygotic (identical) twins must be of the same gender. Am ong all twin
pregnancies, about 1/3 are monozygotic.

Find the probability of two girls in
(a) monozygotic pregnancy,
(b) dizygotic pregnancy, and
(c) dizygotic pregnancy given that we know that the gender of the babies is

the same.
If Mary is expecting twins, but no information about the type of pregnancy is
available, what is the probability that the babies are
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(d) two girls;
(e) of the same gender;
(f) Find the probability that Mary's pregnancy is dizygotic if it is only known

that the babies are two girls.
Retain four decimal places in your calculations.

Hint: (a) given; (b) genders are independent; (c) conditional pro bability:
P(A jB) ÆP(A \ B)/P(B). Since A is subset of B , A \ B Æ A and P(A jB) Æ
P(A)/P(B); (d) total probability formula/rule. What are the hypothe ses? (e)
similar to (d); (f) Bayes' rule.

(a) P(GGjMZ ) Æ0.49. This is because a single egg is fertilized to form one

zygote, which subsequently divides into two separate embry os.
(b) Because of independence, this probability is P(GGjDZ ) Æ0.49 £ 0.49 Æ

0.2401.
(c) The same gender S ÆBB [ GG in dizygotic pregnancy happens with prob-

ability of P(SjDZ ) Æ0.492Å0.512 Æ0.5002. Then the probability is P(GGjDZ \
S) ÆP(GG \ SjDZ )/P(SjDZ ) ÆP(GGjDZ )/P(SjDZ ) Æ0.2401/0.5002 Æ0.4800.

(d) P(GG) ÆP(GGjMZ )P(MZ )Å P(GGjDZ )P(DZ ) Æ0.49¢1/3Å 0.2401¢2/3 Æ
0.3234.

(e) S ÆBB [ GG; P(S) ÆP(SjMZ )P(MZ )Å P(SjDZ )P(DZ ) Æ1¢1/3Å 0.5002¢
2/3 Æ0.6668.

(f) P(DZ jGG) ÆP(GGjDZ )P(DZ )/P(GG) Æ0.2401¢2/3
0.3234 Æ0.4949.

3.a2 Greta. There is a 10% chance that pure breed German shepherd Greta
is a carrier of canine hemophilia A. If she is a carrier, there is a 50-50 chance
that she will pass the hemophiliac gene to a puppy.

Greta has two male puppies and they are tested free of hemophi lia. What
is the probability that Greta is a carrier, given this inform ation about her
puppies?

Hint: Passing the hemophiliac gene is independent between the pup pies. If
the puppies are male than the only way they will get the hemoph ilia is from
the mother carrier since hemophilia is X-chromosome-bound disorder.

Let H 1 denote the event that Greta is a carrier, then P(H 1) Æ0.1. Let A

be the event that the two male puppies are disease free. Then P(A jH c
1) Æ1,

that is, if Greta is not a carrier, the puppies are disease fre e with probabil-
ity 1. Because of independence P(A jH 1) Æ0.5 ¤ 0.5 and according to the total
probability formula

P(A) ÆP(A jH 1)P(H 1)Å P(A jH c
1)P(H c

1) Æ0.5¢0.5¢0.1Å 1¢0.9 Æ0.925.

By Bayes formula,

P(H 1jA) Æ
P(A jH 1)P(H 1)

P(A)
Æ0.025/0.925 Æ0.027.
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3.a3 Gambling Fallacy. An event that happened on August 18, 1913 in Le
Grand Casino de Monte Carlo made headlines. The ball of a roul ette wheel
landed on “black” 26 times in a row. Out of 37 slots denoted by 0 -36 (French
roulettes have no a 00-slot), 18 slots (2, 4, 6, 8, 10, 11,13, 1 5, 17, 20, 22, 24,
26, 28, 29, 31, 33, 35) are black, so the probability of a ball l ending in black is
18/37.

(a) What is the probability that in the next 26 spins of a simil ar roulette
wheel the ball lands on “black” every single time.

(b) After the ball landed in black slot 15 times in a row, the pl ayers in
Le Grand Casino frantically started to bet on red, and that ev ening Casino
amassed a pro�t in millions of Francs. If one started to bet on black with $1,
what capital he/she will have after 26th consecutive black, if Casino doubles
the bet placed on winning color.





Chapter 4

Sensitivity, Speci�city, and Relatives

4.1 Stacked Auditory Brainstem Response.
TBA

4.2 Hypothyroidism.
TBA

4.3 Alzheimer's.
P(T jD ) Æ436/450 Æ0.9689 and P(T cjD c) Æ495/500 Æ0.99. The �rst is the probability

that a patient who shows symptoms of Alzheimer's disease wou ld test positive (sensitivity)
and the second is the probability that a subject who does not h ave symptoms of Alzheimer
would test negative (speci�city). Note that P(T cjD ) Æ1 ¡ P(T jD ) Æ0.0311 and P(T jD c) Æ
1 ¡ P(T cjD c) Æ0.01.

By Bayes' formula

P(D jT ) ÆP(T jD )P(D )/P(T )

Æ
P(T jD )P(D )

P(T jD )P(D ) Å P(T jD c)P(D c)

Æ
0.9689£ 0.113

0.9689£ 0.113Å 0.01£ 0.887
Æ0.9251.

4.4 Test for Being a Duchenne Muscular Dystrophy Carrier.
TBA

4.5 Parkinson's Disease Statistical Excursions.
TBA

4.6 Blood Tests in Diagnosis of In�ammatory Bowel Disease.
Sol. The number of TP is (sensitivity £ number of people with the disease),

0.903£ 103 Æ93.009 ¼93. To �nd TN, we multiply speci�city with the number
of controls, 0 .8£ 50 Æ40. The table is

21



22 4 Sensitivity, Speci�city, and Relatives

disease present (D) no disease present (C) total
test positive (P) 93 10 103
test negative (N) 10 40 50

total 103 50 153

Prevalence can be evaluated from the table. It is the proport ion of peo-
ple with the disease among all 153 subjects in the experiment , 103/153 Æ

0.6732 ¼67.3%.
Positive predicted value is the proportion of people who hav e the disease

among the subjects who tested positive. In this case it happe ned to coincide
with sensitivity, 93/103 Æ 90.3% .

4.7 Carpal Tunnel Syndrome Tests.
TBA

4.8 Hepatitic Scintigraphy.
TBA

4.9 Apparent Prevalence.
TBA

4.10 HAAH Improves the Test for Prostate Cancer.

(a) Recall that sensitivity is the ratio of true positives an d total number of
subjects with the disease. Since 233 subjects are with the di sease, the sensitiv-
ity of 95% means that there are 233 ¢0.95 Æ221.35 ¼221 true positives. Thus
tp = 221. This gives 233 ¡ 221 Æ12 false negatives, thus fn = 12.

Similarly, 43 subjects do not have disease. Since speci�cit y is 0.93, the true
negatives are 43 ¢0.93 Æ39.99 ¼40. This means tn=40 and fp = 3 . The table
is

disease no disease total
test positive tp=221 fp=3 tot.pos = 224
test negative fn=12 tn=40 tot.neg = 52

total tot.dis=233 tot.ndis=43 total=276

(b)
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P( disease j test positive)

Æ
P(test positive j disease)P( disease)

P(test positive j disease)P( disease)Å P(test positive j no disease)P( no disease)

Æ
sensitivity ¢prevalence

sensitivity ¢prevalence Å (1-speci�city) ¢(1- prevalence)

Æ
221/233£ 7/100

221/223£ 7/100Å 3/43£ 93/100

Æ 0.5058

(c) PPV Æ tp
tp Åfp Æ221/224 Æ 0.9866 .

In both (b) and (c) we have found positive predicted value, th at is P( disease j test positive) .
However, (b) and (c) differ in the information where the subj ect comes from,
which is critical for the prevalence. If the subject comes fr om the general pop-
ulation then the prevalence is 0.07 and that is used in place o f P( disease) in
the Bayes formula.

If we selected the subject from the group involved in this stu dy (that is,
selected person is one of 276 subjects), then the “prevalenc e” refers to this
particular group and is tp Åfn

total n Æ233/276.

4.11 Creatinine Kinase and Acute Myocardial Infraction.
TBA

4.12 Asthma.
TBA

4.1 Additional Problems

4.a1 Spectral Indices of Mammogram Images Predictive of BC. Can
the properties of mammogram backgrounds be indicative of br east cancer?
The collection of digitized mammograms was obtained from th e University of
South Florida's Digital Database for Screening Mammograph y (DDSM). Im-
ages from this database are coupled with cancer status veri� ed through biopsy.
For every image a slope of wavelet spectra was calculated (Ha milton et al.,
20111), and corresponding cancer status recorded. Only the crani ocaudal pro-
jection images were used: the right breast image for all norm al cases, and the
cancerous breast (right or left) image for cancer cases. The re were 105 normal
(benign) cases, and 72 cancer cases considered. A malignant mammogram and
subimage used to �nd the spectral slope are presented in Fig. 4.1.

1 Erin K. Hamilton, Seonghye Jeon, Pepa Ramírez Cobo, Kichun S ky Lee, and Brani Vi-
dakovic (2011). Diagnostic Classi�cation of Digital Mammo grams by Wavelet-Based Spec-
tral Tools: A Comparative Study. Proceedings of BIBM 2011, A tlanta GA
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Fig. 4.1 Left panel : right CC mammogram corresponding to a malignant case. Right panel :
subimage of size 1024 £ 1024 considered for the analysis

The data set sslopesstatus.dat contains two columns: slope of the spec-
tra and breast cancer status. The goal is to propose and evalu ate a test for
BC based only on the slope of mammogram wavelet spectra. A MAT LAB �le
cancerslope.m reads in the data and calculates and plots the ROC.

(a) Find AUC. How would you grade this test?
(b) Find Youden Index (YI - maximal distance of ROC from the 45 ± line).
(c) What threshold for the slope would you suggest so that mam mograms

with slopes exceeding this threshold are considered positi ve for BC. Assume
that the errors of misclassi�cation are equally bad.

(d) What are the sensitivity/speci�city of the test at the th reshold suggested
in (c)?

Hint. Calculations similar to (a-d) can be found in rocada.m .
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Random Variables

5.1 Phase I Clinical Trials and CTCAE Terminology.

X = [0 1 2 3 4 5];
px = [0.620 0.190 0.098 0.067 0.024 0.001];
sum(px) %check that the probabilities sum up to 1

w=0.02; ms=6; %plotting parameters: width of bar and marker size
xx = X; yyp= px;yyc= cumsum(px);
figure(1)
subplot(211)
bar(xx, yyp, w,'b')
hold on
plot(xx,yyp, 'bo','MarkerSize',ms, 'MarkerFaceColor', 'b')
hold off
axis tight
subplot(212)
stairs(xx,yyc)
hold on
plot(xx(2:end),yyc(1:end-1),'b>')
plot(xx, yyc, 'bo', 'MarkerFaceColor','b' )
hold off

% Expectation
EX=X* px' %or EX = sum(X . * px)
% k-th moment EXk = (X.^k) * px'
EX2 = (X.^2) * px' %second moment
% Variance (second central moment)
VarX = EX2 - EX^2 %or VarX=sum( (X-EX).^2 . * px )

5.2 Mendel and Dominance.
A child from hybrid parents will be DD, Dd, or dd with probabilities

of 1/4, 1/2, and 1/4, respectively. One offspring will give o utward dominant

25



26 5 Random Variables

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Fig. 5.1 CTCAE discrete random variable (a) probability mass functi on and (b) cdf.

appearance with probability 1/4 + 1/2 = 3/4. Now we have Binom ial sampling
with parameters n Æ4 and p Æ3/4 and the required probability is 27/64.

5.3 Chronic Kidney Disease.

(a) binopdf(3, 10, 0.17) = 0.1600 ,
(b) 1-binopdf(0, 5, 0.4)=0.9222 ,
(c) (i) binopdf(3, 5, 6/16)=0.2060 , (ii) 1-binopdf(0, 5, 6/16)=0.9046 , and
(d) geopdf(3-1, 0.4) = 0.1440 .

5.4 Ternary channel.
TBA

5.5 Conditioning a Poisson.

P(X1 Æk jX1 Å X2 Æn) Æ
P(X1 Æk, X1 Å X2 Æn)

P(X1 Å X2 Æn)

Æ
P(X1 Æk, X2 Æn ¡ k)

P(X1 Å X2 Æn)

Æ

¸ k
1

k! e¡ ¸ 1 £
¸ (

2n¡ k)
(n¡ k)! e¡ ¸ 2

(¸ 1Å¸ 2)n

n! e¡ ¸ 1¡ ¸ 2

Æ

Ã
n

k

! µ
¸ 1

¸ 1 Å ¸ 2

¶k

£
µ

¸ 2

¸ 1 Å ¸ 2

¶n¡ k

,

which is B in
³
n, ¸ 1

¸ 1Å¸ 2

´
..

5.6 Rh+ Plates.
TBA
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5.7 Your Colleague's Misconceptions About Density and CDF.
TBA

5.8 Falls among elderly.
TBA

5.9 Cell clusters in 3-D Petri dishes.

5.35 Heat Production by a Resistor.
TBA TBA

5.10 Left-handed Twins.
TBA

5.11 Pot Smoking is Not Cool!

% Solution
disp('(a) Bin(12, 0.7): P(7 <= X <= 9)');
%(a) using binopdf(x,n,p)
disp('(a)-using pdf'); binopdf(7, 12, 0.70) ...

+ binopdf(8, 12, 0.70) + binopdf(9, 12, 0.70)
% ans = 0.6293
% using binocdf(x, n, p)
disp('(a)-using cdf'); binocdf(9, 12, 0.70) - binocdf(6, 1 2, 0.70)
% ans = 0.6293
%(b) at most five i.e., X <= 5
disp('(b) Bin(12, 0.7): P(X <= 5)'); binocdf(5, 12, 0.70)
% ans = 0.0386
%(c) not less than 8 is 8,9,10,11,12 or complement of <=7
disp('(c) Bin(12, 0.7): P(X >= 8)'); 1-binocdf(7, 12, 0.70)
% ans = 0.7237
%---------------------------------

5.12 Emergency Help by Phone.

(a) Y Ænumber of calls until �rst call answered late (including the late one),
Y » Geom(0.1), EY Æ10, ( [m var] = geostat(0.1); mean = m + 1 ).

(b) X Ænumber of calls of the next 10 that are answered late , X » B in (10,0.1)
P(X Æ1) Æ

¡10
1

¢
¢0.1¢(0.9)9 Æ0.3874. ( binopdf(1, 10, 0.1) )

5.13 Min of Three.
The sample space looks like the following table and each entr y has the

probability (1/3) 3 Æ1/27, because of independence.
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X1 X2 X3 M Mx R X1 X2 X3 M Mx R X1 X2 X3 M Mx R
111 1 1 0 211 1 2 1 311 1 3 2
112 1 2 1 212 1 2 1 312 1 3 2
113 1 3 2 213 1 3 2 313 1 3 2
121 1 2 1 221 1 2 1 321 1 3 2
122 1 2 1 222 2 2 0 322 2 3 1
123 1 3 2 223 2 3 1 323 2 3 1
131 1 3 2 231 1 3 2 331 1 3 2
132 1 3 2 232 2 3 1 332 2 3 1
133 1 3 2 233 2 3 1 333 3 3 0

By counting the equally-likely outcomes from the table, we � nd the proba-
bility distribution functions and cumulative distributio n functions for M and
R.

M 1 2 3
p 19/27 7/27 1/27

FM (m) Æ

8
>><

>>:

0, m Ç 1
19/27, 1 · m Ç 2
26/27, 2 · m Ç 3

1, m ¸ 3

and

R 0 1 2
prob 1/9 4/9 4/9

FR (r ) Æ

8
>><

>>:

0, r Ç 0
1/9, 0 · r Ç 1
5/9, 1 · r Ç 2
1, r ¸ 2

This is not an elegant solution. A somewhat more elegant solu tion is the
following: Since M is the minimum of X1, X2 and X3:

P(M È m) ÆP(X1 È m, X2 È m, X3 È m) Æ[P(X1 È m)]3 Æ

8
>><

>>:

1, m Ç 1
(2/3)3, 1 · m Ç 2
(1/3)3, 2 · m Ç 3

0, m ¸ 3.

Now, P(M Æ2) ÆP(M È 1) ¡ P(M È 2) Æ(2/3)3 ¡ (1/3)3 Æ7/21, and P(M Æ3) Æ
P(M È 2)¡ P(M È 3) Æ(1/3)3¡ 0 Æ1/27. Since, P(M Æ1) Æ1¡ P(X Æ2)¡ P(X Æ3),
the distribution for M follows.

For distribution of R the following consideration is useful. There are 3 3

possible realizations (number of words of length k in alphabet consisting of n
symbols is nk ). R can be 0, 1, or 2. It is easy to see that event {R Æ0} corre-
sponds to 3 realizations: 000, 111, and 222. Thus, P(R Æ0) Æ3/27 Æ1/9.

The difference {R Æ1} happens when the “words” of length 3 come from
alphabets {1,2} or {2,3} and not all “letters” are the same. There are 2 3 Å 23 ¡ 4
such words. We subtract 4 since words 111 and 222 can be formed in alphabet
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{1,2} and 222 and 333 in alphabet {2,3}. Thus P(R Æ1) Æ12/27. Finally, P(X Æ
2) Æ1 ¡ 3/27 ¡ 12/27 Æ12/27.

5.14 Cystic Fibrosis in Japan.
TBA

5.15 Random Variables as Models.
(a) The rate of gastrointestinal reactions per prescriptio n is 538/9160000,

and per 10000 prescriptions is 538/9160000 £ 10000 Æ0.5873.
(b) If ¸ Æ0.5873, and X is the number of gastrointestinal reactions per

10000 prescriptions, then the suggested model is X » P oi(0.5873). Further-
more,

P(X Æ2) Æ
0.58732

2!
e¡ .5873 Æ0.0959,

i.e., about 9.6%.
(c) The probability is P(X ¸ 2), which is equal to 1 ¡ P(X Ç 2) Æ1 ¡ P(X · 1),

since the Poisson model is discrete and P(X Ç 2) ÆP(X · 1). Then,

P(X ¸ 2) Æ1 ¡ P(X · 1)

Æ1 ¡ P(X Æ0) ¡ P(X Æ1) Æ1 ¡
0.58730

0!
e¡ .5873 ¡

0.58731

1!
e¡ .5873 Æ0.1177.

i.e., about 11.8%. Recall, 0! = 1, by de�nition.

If MATLAB is used, then

lambda = 538/9160000 * 10000 %answer for (a)
%lambda = 0.5873

p2 = lambda^2/2 * exp(-lambda) %answer for (b)
%p2 = 0.0959

p2plus = 1 - lambda^0/1 * exp(-lambda)...
- lambda^1/1 * exp(-lambda) %answer for (c)

%p2plus = 0.1177

Parts (b) and (c) can be found via poisspdf and poisscdf as

poisspdf(2, 0.5873)
%ans = 0.0959

1-poisscdf(1, 0.5873)
%ans = 0.1177

5.16 Additivity of Gammas.
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The moment generating function for gamma Ga(r , ¸ ) distribution is ¸ r

(¸ ¡ t)r .

By convolution property of moment generating functions,

mY (t) Æ
nY

iÆ1
m X i (t) Æ

¸ r 1

(¸ ¡ t)r 1

¸ r 2

(¸ ¡ t)r 2
. . .

¸ r n

(¸ ¡ t)r n
Æ

¸ r

(¸ ¡ t)r ,

which is the moment generating function of Ga(r , ¸ ). Since the moment gen-
erating functions uniquely determine distributions when t hey exist, the ad-
ditivity property of Gammas with respect to the shape parame ter is proved.

5.17 Memoryless property.
Note that in general {X ¸ u Å v} \ {X ¸ u} is equivalent to {X ¸ u Å v}.

Proof for exponentials. Since, for the exponential distrib ution P(X · x) Æ
1 ¡ e¡ x/¯ , x ¸ 0 is the cdf, then the residual life is P(X ¸ x) Æe¡ x/¯ .

Then,

P(X ¸ u Å vjX ¸ u) Æ
P({X ¸ u Å v} \ {X ¸ u})

P(X ¸ u)
Æ

P(X ¸ u Å v)

P(X ¸ u)
Æ

e¡ (uÅv)/¯

e¡ u/¯
Æe¡ v/¯ ÆP(X ¸ v).

Proof for geometric. Denote q Æ1 ¡ p. Then P(X ¸ x) Æ1 ¡ P(X Ç x) Æ1 ¡
P(X · x ¡ 1) Æ1 ¡

P x¡ 1
kÆ0 qk p. Since,

P x¡ 1
kÆ0 qk Æ1¡ qx

1¡ q and 1 ¡ q Æp, the residual

life is P(X ¸ x) Æ1 ¡ p 1¡ qx

1¡ q Æ1 ¡ (1 ¡ qx) Æqx.
Now, as for the exponentials,

P(X ¸ u Å vjX ¸ u) Æ
P(X ¸ u Å v)

P(X ¸ u)
Æ

quÅv

qu Æqv ÆP(X ¸ v).

5.18 Rh System.
TBA

5.19 Blood Types.
(a) X » B in (24,0.374) P(X Æ8) Æ

¡24
8

¢
0.3748(1 ¡ 0.384)24¡ 8 Æ0.1566.

EX Ænp Æ8.976, Var X Ænpq Æ5.619.
(b) hygecdf(2,16,8,5) = 0.5.
(c) X » P oi(500£ 0.006). P(X ¸ 1) Æ0.9502.
(d) X » Geo(0.085). EX Æ1/p Æ11.7647.

5.20 Variance of the Exponential.
EX 2 Æ

R1
0 x2¸ e¡ ¸ xdx Æ[[ u Æx2;dv Æ¸ e¡ ¸ x;du Æ2xdx;v Æ ¡ e¡ ¸ x]] ¡ x2e¡ ¸ xj10 Å

2
R1

0 xe¡ ¸ xdx Æ0Å 2
R1

0 xe¡ ¸ xdx Æ[[ u Æx;dv Æe¡ ¸ xdx;du Ædx;v Æ ¡ 1
¸ e¡ ¸ x]] ¡

2x
¸ e¡ ¸ xj10 Å 2

¸

R1
0 e¡ ¸ xdx Æ0Å 2

¸

R1
0 e¡ ¸ xdx Æ2

¸ £ 1
¸ Æ2/¸ 2.



5 Random Variables 31

Since Var X ÆEX 2 ¡ (EX )2 and EX Æ1/¸ , it follows that Var X Æ2/¸ 2 ¡
(1/¸ )2 Æ1/¸ 2.

5.21 Equipment Aging.
(a) Note that for exponential distribution, P(T È x) Æ1¡ P(T · t) Æ1¡ F (t) Æ

1¡ (1¡ e¡ ¸ t ) Æe¡ ¸ t . Then, 0 .8 ÆP(T È 10) Æe¡ 10¸ . That means, ¸ Æ ¡ 1
10 ln(0 .8) Æ

0.0223.
(b) ET Æ1/¸ Æ44.843 and V arT Æ2010.9
(c) Let t p be 100p percentile. Then F (t p) Æp. Solving 1 ¡ e¡ ¸ t p Æp we obtain

an exact formula for 100 p percentile, t p Æ ¡ 1
¸ ln(1 ¡ p).

² Median t0.5 Æ ¡ 1
0.0223 ln(0 .5) Æ31.0828

² Q1: t0.25 Æ ¡ 1
0.0223 ln(0 .75) Æ12.9005

² Q3 t0.75 Æ ¡ 1
0.0223 ln(0 .25) Æ62.1657

² IQR ÆQ3 ¡ Q1 Æ62.1657 ¡ 12.9005 Æ49.2652
In MATLAB

expinv([0.25 0.5 0.75], 1/0.0223)
%ans = 12.9005 31.0828 62.1657

5.22 A Simple Continuous Random Variable.
TBA

5.23 2-D Continuous Random Variable Question.

(a) C Æe
(b) f X (x) ÆexÅ1¡ 1

ex . fY (y) Æe(1¡ (1Å y)e¡ y)
y2 .

5.24 Insulin Sensitivity.
Hint: Here MATLAB's parametrization of gamma density is used, ® Ær

and ¯ Æ1/¸ . In terms of ® and ¯ , EX Æ®¯ and Var X Æ®¯ 2.

5.25 Correlation Between a Uniform and its Power.
TBA

5.26 Precision of Lab Measurements.
(a) P(measurement X accurate) ÆP(jX j Ç 0.5) ÆP(¡ 0.5 Ç X Ç 0.5) Æ

R0.5
¡ 0.5 3x2/16dx Æ 3

16
x3

3 j0.5
¡ 0.5 Æ1/16(1/8 ¡ (¡ 1/8)) Æ1/64 Æ0.0156.

(b) For x Ç ¡ 2, F (x) Æ0 and for x È 2, F (x) Æ1. For ¡ 2 · x · 2,

F (x) Æ
Z x

¡ 2

3

16
t2dt Æ

t3

16

¯
¯x
¡ 2 Æx3/16 ¡ (¡ 2)3/16 Æx3/16Å 1/2.

In MATLAB,
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Fig. 5.2 F (x) Æx3/16Å 1/2, ¡ 2 · x · 2; F (x) Æ0, x Ç ¡ 2; F (x) Æ1, x È 2.

x = - 2:0.01:2;
y = x.^3/16 + 1/2;
plot(x, y, 'linewidth',4)
xn = -4:0.01:-2;
yn = 0 . * xn;
xp = 2:0.01:4;
yp = ones(size(xp));
hold on
plot(xp, yp, 'linewidth',4)
plot(xn, yn, 'linewidth',4)

(c) EY ÆEX 2 Æ
R2

¡ 2 x2 3
16 x2dx Æ 3

16
x5

5

¯
¯2
¡ 2 Æ3(32¡ (¡ 32))

16¢5 Æ192/80 Æ2.4

5.27 Lifetime of Cells.

%expected life: beta = 4 mo
% 150 days = 5 mo
1-expcdf(5,4) %(Cells(a))

%ans = 0.2865
% 1 y= 12 mo; Poisson(12/4)
% Observed on average expectation of Poisson(3) = 3.
% Or rationalize:
% 12/average life time = 3, but this is informal
1-poisscdf(5, 3) %(Cells(b))

%ans = 0.0839
%
1 - gamcdf(12, 3, 4) %(Cells(c))

%ans = 0.4232
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%
%(Cells(d)): By memoryless property
% P(X>=7.2|X>=2.2)=P(X>=7.2-2.2)=P(X>=5)
% which is equal to (Cells(a)), 0.2865

5.28 Silver-coated Nylon Fiber.

%Silver Coated Nylon Fibers
% (a)
1 - expcdf(10, 10) % 0.3679
% (b)
expcdf(15,10) %0.7769
% (c) is the same as (a) because of memoryless property.

5.29 Xeroderma pigmentosum.
TBA

5.30 Failure Time. TBA

5.31 Beta Fit.
TBA

5.32 Uncorrelated but Possibly Dependent.
Enough to show that Cov(Z,W) Æ0. This follows from Cov(Z,W) ÆE((X Å

Y )(X ¡ Y )) ÆE(X 2 ¡ Y 2) ÆEX 2 ¡ EY 2, and EX 2 ÆEY 2.

5.33 Nights of Mr Jones.

Monday Tuesday Wednesday Thursday Friday
Prob(Insomnia) 1 0.4000 0.4600 0.4540 0.4546
Prob(Sleep Well) 0 0.6000 0.5400 0.5460 0.5454

5.34 Stationary Distribution of MC.
TBA

5.35 Heat Production by a Resistor.
TBA
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5.1 Additional Problems

5.a1 Africanized Honey Bee. Matis et al. (1992), also Pal et al. (2005), mod-
eled the 'transit-time' distribution of Africanized honey bee spread through
northern Guatemala and Mexico. Data were collected on the �r st capture
times of the bee at various monitoring transects in northern Guatemala and
on the eastern and western costs of Mexico. The time interval s between con-
secutive sightings (in months) are reported. The transit ti me (months/100 km)
data set consists of 45 observations.

5.3 1.8 4.2 5.7 3.8 0.8 1.4 3.5 17.5
4.6 0.8 6.3 2.9 0.6 1.9 2.0 6.7 5.5
2.5 2.2 6.7 5.7 10.0 3.3 3.5 20.0 1.6
8.3 4.8 20.0 3.6 8.2 1.3 4.0 5.0 1.7
2.0 2.9 19.2 1.1 1.4 1.5 3.2 8.6 2.2

It was suggested that gamma Ga(r , ¸ ) distribution is an appropriate model
for the transition time, T . Here, r is the shape parameter and ¸ is the rate
parameter.

(a) It is known that ET Ær /¸ and V arT Ær /¸ 2. Find moment matching
estimators for r and ¸ by replacing ET and V arT with T and s2.

(b) For r and ¸ as in (a), �nd the probability that transit time T exceeds 15
(month/100 km).

(c) What is the 0.8 quantile of T , that is, �nd t¤ for which P(T · t¤ ) Æ0.8.
² Matis, J. H., Rubink, W. L., Makela, M. (1992). Use of the gamm a distribu-

tion for predicting arrival times of invading insect popula tions. Environmental
Entomology , 21, 431–440.

² Pal, N., Jin , C., Lim W.-K. (2005). Handbook of Exponential and Related
Distributions for Engineers and Scientists , Chapman and Hall/CRC.

Hint: In MATLAB be careful about the parametrization of gamm a distribu-
tion. MATLAB uses scale parameter ¯ Æ1/¸ instead of rate parameter ¸ .

% Africanized Honey Bee transit times
t =[...

5.3 1.8 4.2 5.7 3.8 0.8 1.4 3.5 17.5 ...
4.6 0.8 6.3 2.9 0.6 1.9 2.0 6.7 5.5 ...
2.5 2.2 6.7 5.7 10.0 3.3 3.5 20.0 1.6 ...
8.3 4.8 20.0 3.6 8.2 1.3 4.0 5.0 1.7 ...
2.0 2.9 19.2 1.1 1.4 1.5 3.2 8.6 2.2];

tbar = mean(t) %5.1067
s2 = var(t) %25.0884

lamhat = tbar/s2 %0.2035
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rhat = (tbar)^2 /s2 %1.0394

%(b) 1/lamhat = 4.9129
1 - gamcdf(15, 1.0394, 4.9129) %0.0509
%(c)
gaminv(0.8, 1.0394, 4.9129) %8.1922

5.a2 Imperfectly Observed Poisson. Suppose that the number of par-
ticular experimental events in time interval [0 ,T ] has a Poisson distribution
P oi(¸ T ). A student who is observing the experiment may fail to count an y of
the events. An event is counted with probability equal to p and missing one
event is independent of missing or counting the others. What is the distribu-
tion of events in [0 ,T ] that are counted?

By total probability formula,

P(n events counted) Æ
1X

kÆn
(P(n events counted jk events happened)P(k events happened)

Æ
1X

kÆn

Ã
k

n

!

pn (1 ¡ p)k¡ n (¸ T )k exp{¡ ¸ T }/k!

Æexp{¡ ¸ T }(p¸ T )n /n!
1X

kÆn

[(1 ¡ p)¸ T ]k¡ n

(k ¡ n)!

Æ(p¸ T )n exp{¡ p¸ T }/n!

after representing
¡k
n

¢
by factorials and observing that

P 1
kÆn

[(1¡ p)¸ T ]k¡ n

(k¡ n)! Æ
P 1

vÆ0
[(1¡ p)¸ T ]v

v! Æexp{(1 ¡ p)¸ T }.
Thus, the number of counted events is again Poisson but with t he rate p¸ T .

5.a3 The Smallest of k Exponentials. Inter-event times in a particular
experimental process are distributed as exponential E(¸ ) where ¸ is the rate
parameter. Suppose that k inter-event times are recorded. What is the distri-
bution of the minimal inter-event time?

Let Y Æmin 1· i · k X i . Then,

FY (y) ÆP(Y · y) Æ1 ¡ P(Y È y) Æ1 ¡ P(X1 È y, X2 È y,. . . , X k È y)

Æ1 ¡
kY

iÆ1
P(X i È y) Æ1 ¡

³
e¡ ¸ y

´k
Æ1 ¡ e¸ ky .

Thus, FY (y) is the cdf of exponential distribution with parameter ¸ k.





Chapter 6

Normal Distribution

6.1 Standard Normal Calculations.
TBA

6.2 Nonnegative De�niteness of § Constrains ½.
TBA

6.3 Herrings.

normcdf(13,10.5,1.6) - 1/2 %% normcdf(a,a,b)=1/2, why?
% ans = 0.4409 %%about 44%
1-chi2cdf(10, 8)
% ans = 0.2650 %%about 26.5%
norminv(0.9, 10.5, 1.6)
% ans = 12.5505

6.4 Sea Urchins.
Here, X » N (2.83,0.792).

(a) P(2.3 · X · 4) ÆP
¡ 2.3¡ 2.83

0.79 · Z · 4¡ 2.83
0.79

¢
ÆP(¡ 0.67 · Z · 1.48) Æ©(1.48)¡

©(¡ 0.67) Æ©(1.48) ¡ (1 ¡ ©(0.67)) Æ0.9306 ¡ (1 ¡ 0.7486) Æ0.6792.
In MATLAB

normcdf(1.48)-normcdf(-0.67)
%ans = 0.6791

% or more precisely
normcdf(4, 2.83, 0.79) - normcdf(2.3, 2.83, 0.79)

%ans = 0.6796

(b) P(X È t¤ ) Æ0.95, is the same as P(X · t¤ ) Æ0.05. The 5th percentile of
standard normal is -1.64, and t¤ ¡ 2.83

0.79 Æ ¡1.64. The solution is t¤ Æ2.83¡ 1.64£
0.79 Æ1.53.

37
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In MATLAB

norminv(0.05, 2.83, 0.79)
%ans = 1.5306

6.5 Pyruvate Kinase for Controls is Normal.
TBA

6.6 Leptin.
TBA

6.7 Pulse Rate.
TBA

6.8 Side Effects.
Correct answer: (c).

normcdf(0.30, 0.25, 0.08)
%ans = 0.7340

6.9 Macrolepiota Procera.

%(a)
normcdf(250, 230, 25)-normcdf(200, 230, 25)

% ans = 0.6731
% OR

normcdf((250 - 230)/25)-normcdf((200 - 230)/25)
%ans = 0.6731
%(b)

norminv(0.95, 230, 25)
% ans = 271.1213

6.10 Duration of Gestation in Humans.
Under the assumed model, the probability that randomly sele cted preg-

nancy case has a duration period equal or larger than 349 is 2 .6 £ 10¡ 12, less
than 3 out of a trillion. The evidence of adultery is overwhel ming. Apparently,
the judges have not taken a course in statistics.

6.11 Tolerance Design.
Denote by D pin and Dhole the random dimensions of interest. According

to the conditions, ¾pin Æt pin /3 Æ0.001.

D pin » N (5,0.0012),

Dhole » N (5.005,¾2
hole),
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and

D gap ÆDhole ¡ D pin » N (5.005 ¡ 5,0.0012 Å ¾2
hole).

It is given that P(D gap ¸ 0.001) Æ0.999, which, after standardizing, becomes

P

0

B
@Z ¸

0.001 ¡ 0.005
q

0.0012 Å ¾2
hole

1

C
AÆ0.999.

0.001 ¡ 0.005
q

0.0012 Å ¾2
hole

Æz0.001 Æ ¡3.0902 (norminv (0.001)Æ ¡3.0902).

From the above,

0.004 Æ3.0902
q

0.0012 Å ¾2
hole ) ¾2

hole Æ
µ

0.004

3.0902

¶2

¡ 0.0012 Æ6.7551£ 10¡ 7.

Finally, the tolerance t hole is 3 ¢
p

6.7551£ 10¡ 7 Æ0.0025.

6.12 Ulnar Variance.
The ulnar variance X has normal N (0.74,1.462) distribution.

(a) Need P(X Ç 0) ÆP(Z Ç 0¡ 0.74
1.46 ) Æ©(¡ 0.74/1.46). In MATLAB, there are

two equivalent ways of getting the solution, using standard normal cdf from
standardized argument or using general normal cdf directly .

%(a)
normcdf(0, 0.74, 1.46) % 0.3061
% or
normcdf( (0 - 0.74)/1.46 ) % 0.3061

(b) C is the difference between two normal random variables. Reca ll, if
X1 » N (¹ 1,¾2

1) and X2 » N (¹ 2,¾2
2), then X2 ¡ X1 » N (¹ 2 ¡ ¹ 1,¾2

1 Å ¾2
2). Sim-

ilar problem was discussed in class – “piston problem” in com bining normal
random variables.

mu1 = 0.19; mu2 = 1.52;
sigma1 = 1.43; sigma2 = 1.56;

muC = mu2 - mu1 %muC = 1.3300

sigmaC = sqrt( sigma1^2 + sigma2^2 ) %sigmaC = 2.1162

1 - normcdf( 1, muC, sigmaC) %ans = 0.5620

6.13 Independence of Sample Mean and Standard Deviation in N or-
mal Samples.
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randn('state',1) %fix random seed
x=normrnd(0, 1,[100, 1000]); %matrix 100 x 1000
xx = mean(x); yy=var(x); %done columnwise
corr(xx', yy') %0.0294
%
plot(xx, yy, 'o', 'MarkerFaceColor','g',...
'MarkerEdgeColor','k','MarkerSize',8)

The scatterplot in Figure 6.1 shows no dependence patterns.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0.5
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1.5

Fig. 6.1 Scatterplot of 1000 points with �rst coordinate being the me an of 100 standard
normals and second coordinate being their variance. The sca tterplot suggest no relationship
between the coordinates. For this case, the coef�cient of co rrelation is 0.0294.

6.14 Sonny and Multiple Choice Exam.

1- normcdf(34.5, 100 * 0.25, sqrt(100 * 0.25 * 0.75))
%ans = 0.0141

6.15 Amount of Liquid in a Bottle.

normcdf(0.48, 0.5, 0.01)
%ans = 0.0228

norminv(0.95, 0.5, 0.01)
%ans = 0.5164

6.16 Meristem Cells in 3D.

Answer: 0.0002. P
³

X 2

¾2 Å Y 2

¾2 Å Z2

¾2 ¸ 702

250

´
= P(Â2

3 ¸ 10.6) Æ0.0002.

6.17 Glossina morsitans.
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%Tsetse Fly
clear all
microns = 15:35;
freq = [7 31 148 230 326 252 237 184 143 ...

115 130 110 127 133 113 96 54 44 11 7 2 ];
sample =[];
for i = 1:21

sample =[sample; repmat(microns(i),freq(i),1)];
end
bar(microns, freq)
mix = gmdistribution.fit(sample,2);
mix.mu
%ans = 26.523 19.493
mix.Sigma
%ans(:,:,1) =10.113 ans(:,:,2) = 3.141
mix.PComponents
%ans = 0.45551 0.54449
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6.18 Stabilizing Variance.
For the exponential E(¸ ), E(X ) Æ¸ and Var X Æ¸ 2, so ¾2 Æ¹ 2. Thus, the

integral in ( ??) is
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g Æc
Z

dx

jxj
Æclog x Å d.

For the binomial case, ¾2 Ænp(1 ¡ p) Ænp ¡ np2 Ænp ¡ (np)2

n Æ¹ ¡ mu 2

n . the
integral in ( ??) is

g Æc
Z

dx
p

x ¡ x2/n
.

6.19 From Normal to Lognormal.
TBA

6.20 The Square of a Standard Normal.
The transformation y Æg(x) Æx2 has two inverse branches, h1(y) Æ

p
y

and h2(y) Æ ¡
p

y. Also, f X (x) Æ 1
2¼e¡ x2/2. Then by the equation in (5.10) on p.

174,

fY (y) Æ f X (h1(y))jh0
1(y)jÅ f X (h2(y))jh0

2(y)j

Æ
1

p
2¼

exp{¡ (
p

y)2/2}

¯
¯
¯
¯

1

2
p

y

¯
¯
¯
¯Å

1
p

2¼
exp{¡ (¡

p
y)2/2}

¯
¯
¯
¯¡

1

2
p

y

¯
¯
¯
¯

Æ
1

p
2¼

y¡ 1/2e¡ y/2 Æ
1

p
2¡

¡ 1
2

¢y1/2¡ 1e¡ y/2, y ¸ 0.

since
p

¼Æ¡
¡ 1

2

¢
.

6.1 Additional Problems

6.a1 Area Spanned by Whiskers. In MATLAB's boxplot the maximum
whisker length is by default 1 .5 IQR , where IQR is the interquartile range
Q3 ¡ Q1. For a standard normal distribution, what area under the dens ity
is spanned by a box-plot with two maximal whiskers (i.e., wit h range [ Q1 ¡
1.5 IQR ,Q3 Å 1.5 IQR ]).

Sol.

>> norminv(0.25)
ans = -0.6745 %Q _1, Q _3 = - Q _1
>> normcdf(4 * 0.6745) - normcdf(-4 * 0.6745) % 2 * Q_3=IQR, 1+3=4
ans = 0.9930
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Point and Interval Estimators

7.1 Tricky Estimation.
Suppose that the total number of misprints is T . Let p1 be the accuracy

of �rst reader (probability that he/she will �nd a particula r misprint), and let
p2 be the accuracy of the second reader. Because of independenc e, their joint
accuracy is p1 p2 (“joint” in sense that they both �nd a particular misprint).
None of the T , p1 or p2 are known, but an estimate of p1T is 60, of p2T is 70,
and p1 p2T is 50.

Thus,

T Æ
(p1T )¢(p2T )

p1 p2T

can be estimated by 60¢70
50 Æ84.

On the other hand, the total number of misprints spotted by bo th is 60+70-
50 = 80. Thus, it follows that the estimated number of remaini ng misprints is
84-80=4.

7.2 Laplace's Rule of Succession.
TBA

7.3 Neurons Fire in Potter's Lab.
TBA

7.4 The MLE in a Discrete Case.
TBA

7.5 MLE for Two Continuous Distributions.
TBA

7.6 Match the Moment.

43
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Hint: L (p) Æ(1 ¡ p)
P

i X i ¢pn .
TBA

7.7 Weibull Distribution.

H INT : Recall that ¡ (n) Æ(n ¡ 1)!
TBA

7.8 Rate Parameter of Gamma.
TBA

7.9 Estimating Parameter of Rayleigh Distribution.

(a) ¾̂2
mm1 Æ2¢(X̄ )2

¼ and ¾̂2
mm2 Æ

P n
i Æ1 X 2

i
2n . (b) ¾̂2

mle Æ¾̂2
mm2. (c) ¾2

mm1 Æ

7.7986, ¾2
mm2 Æ6.75. (d) Yes. Since ¸ Æ 1

2¾2 by the invariance of MLE, ˆ̧
mle Æ

1
2(¾̂mle )2

.

7.10 Monocytes Among Blood Cells.
TBA

7.11 Estimation of µ in U (0,µ).
TBA

7.12 Estimating the Rate Parameter in a Double Exponential D istri-
bution.

TBA

7.13 Reaction Times I.

n=20; xb=0.9; s=0.12;
[xb-tinv(0.975,19) * s/sqrt(n), xb+tinv(0.975,19) * s/sqrt(n)]

%ans = 0.8438 0.9562
[xb-tinv(0.9925,19) * s/sqrt(n), xb+tinv(0.9925,19) * s/sqrt(n) ]

%ans = 0.8282 0.9718
[(n-1) * s^2/chi2inv(0.975, n-1), (n-1) * s^2/chi2inv(0.025,n-1)]

%ans = 0.0083 0.0307

7.14 Reaction Times II.

[xb-norminv(0.9925) * s/sqrt(n), xb+norminv(0.9925) * s/sqrt(n)]
%ans = 0.8347 0.9653

1.96^2 * s^2 * 4/0.07^2
%ans = 45.1584
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7.15 Toxins.

X=[3 2 5 3 2 6 5 4.5 3 3 4];
Xbar = mean(X)

%Xbar = 3.6818
n=length(X)

%n = 11
s = std(X)

%s = 1.3091

[Xbar - tinv(0.995, n-1) * s/sqrt(n), ...
Xbar + tinv(0.995, n-1) * s/sqrt(n)]

%ans = 2.4309 4.9327

7.16 Bias of s¤ .
TBA

7.17 COPD Patients.

n=157; X=87;
phat = X/n

%phat = 0.5541
qhat = 1 - phat

%qhat = 0.4459
[phat - norminv(0.95) * sqrt(phat * qhat/n), ...

phat+norminv(0.95) * sqrt(phat * qhat/n)]
%ans = 0.4889 0.6194

n=(2 * norminv(0.95) * sqrt(0.5 * 0.5)/0.03)^2
% n = 3.0062e+003

(i) An estimator for p is p̂ ÆX /n Exact distribution for X is binomial
B in (n, p). Since n Æ157 is large, normal approximation to binomials hold
and X has approximately normal distribution with mean np and variance
npq . Thus, p̂ ÆX /n has approximately normal distribution with expectation
np/n Æp and variance npq /n2 Æpq/n.

(ii) From approximation in 4.1 the (1 ¡ ®)£ 100% con�dence interval is:
h

p̂ ¡ z1¡ ®/2

p
p̂ q̂/n, p̂ Å z1¡ ®/2

p
p̂ q̂/n

i
.

(iii) The sample size needed is n Æ3007. Note that we conservatively took
p̂ Æq̂ Æ0.5 since sample size is prospective in nature and p̂ is not observed. A
good estimate p̂ is justi�ed especially if the population proportion p is close to
either 0 or 1.

(iv)
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phat = 0.5541; p0 = 0.5;
qhat = 1- phat; q0 = 1 - p0;
n = 157;
z = (phat - p0)/sqrt( p0 * q0/n )
%z = 1.3557
pvalue = 1-normcdf(1.3557)
% pvalue = 0.0876

At signi�cance level ® Æ5% the hospital cannot support their claim – H 0

is not rejected. If ® Æ0.10, H 0 is rejected, the hospital's claim is statistically
supported.

7.18 Right to Die.

n = 1528; X = 1238; phat=X/n
%phat = 0.8102
[phat - norminv(0.995) * sqrt(phat * (1-phat)/n),...

phat + norminv(0.995) * sqrt(phat * (1-phat)/n)]
%ans = 0.7844 0.8360

L=2* 0.01;
n = 4* norminv(0.975)^2 * 0.8 * 0.2 /L^2

%n = 6.1463e+003
% Take sample of size 6147

7.19 Exponentials Parameterized by the Scale.

(i) Since EX Æ¸ , the simplest moment matching estimator is ˆ̧ ÆX̄ . Since
the variance is ¸ 2, another moment matching estimator would be ˆ̧ Æ

p
s2 Æs,

where s is the sample standard deviation.
The MLE is X̄ . Indeed,

L (¸ ) Æ
nY

iÆ1

1

¸
e¡

X i
¸ Æ

1

¸ n e¡
P n

i Æ1
X i

¸ .

By taking natural logs we obtain,

log L (¸ ) Æ` (¸ ) Æ0 ¡ n log(¸ ) ¡
1

¸

nX

iÆ1
X i .

In order to �nd the ¸ at which the likelihood L (¸ ), or equivalently, the log-
likelihood ` (¸ ), is maximized, we take the derivative of ` (¸ ) with respect to ¸
and set it equal it to 0,

¡
n

¸
Å

1

¸ 2

nX

iÆ1
X i Æ0.
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By solving this equation with respect to ¸ we ultimately obtain that MLE is
ˆ̧ ÆX̂ .

Note that MLE coincides with the moment matching estimator ( correspond-
ing to the �rst moment).

(ii) Since E(Y1) Æ ¸
2 and E(Y2) Æ2¸ , many selections of constants w1 and

w2 will make ˆ̧ Æw1Y1 Å w2Y2 an unbiased estimator, and the solution is not
unique. Indeed, the equation E ˆ̧ Æw1 ¢̧ /2Åw2¢2¸ Æ¸ has a continuum of many
solutions with respect to w1 and w2.

The problem asks for a speci�c linear combination and a possi ble choice
could be ˆ̧ ÆY1 Å Y2

4 ,(w1 Æ1,w2 Æ1/4). For such a choice of w 's, the variance of
ˆ̧ is: V ar ( ˆ̧ ) Æ12 ¢( ¸

2 )2 Å 1
16 ¢(2¸ )2 Æ¸ 2

2 .
More generally, if we consider only non-negative weights w1 and w2, any

point from the line segment w1
2 Å w2

1/2 Æ1 in the �rst quadrant w1Ow2 will
make the estimator ˆ̧ unbiased. The variance of such a general estimator is
w2

1( ¸
2 )2 Å w2

2(2¸ )2. Replacing w1 Æ2 ¡ 4w2 (recall w1 and w2 are on the line
segment) and taking the �rst derivative with respect to w2, we obtain that
minimum variance achieved at w2 Æ1/4, which corresponds to our original
choice: w1 Æ1 and w2 Æ1/4.

Legitimate choices of weights are also w1 Æ0,w2 Æ1/2 leading to ˆ̧ Æ Y2
2 ,

as well as, w1 Æ2,w2 Æ0 leading to ˆ̧ Æ2Y1. What are variances of these two
estimators?

(iii) By simple inspection only p Æ1/2 will make the estimator ˆ̧ ÆpZ1Å (1¡
p)Z2 unbiased and such an estimator trivially minimizes the (abs olute value
of) magnitude of bias. For p Æ1/2 the bias of ¸ is 0.

The variance of ˆ̧ is

Var ( ˆ̧ ) Æp2(1.1¸ )2 Å (1 ¡ p)2(0.9¸ )2.

Taking the derivative with respect to p we conclude that the minimum of vari-
ance is achieved as the solution of equation 2 .42p ¡ 2(1 ¡ p)0.81 Æ0. The solu-
tion is: p Æ1.62/4.04 Æ0.401.

7.20 Bias in Estimator for Exponential ¸ .
TBA

7.21 Yucatan Miniature Pigs.
The solution is not unique. One can match variance of Beta, ab/((a Å b Å

1)(aÅ b)2) ] to s2 and solve for a assuming that b Æa. Result. â Æ1/(8s2)¡ 1/2 Æ
2.8711, where s2 is the sample variance of x.

7.22 Computer Games.
TBA

7.23 Effectiveness in Treating Cerebral Vasospasm.
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TBA

7.24 Alcoholism and Blyth-Still Con�dence Interval.
TBA

7.25 Spores of Amanita Phalloides.

amanita =[ 9.2, 8.8, 9.1, 10.1,...
8.5, 8.4, 9.3, 8.7,...
9.7, 9.9, 8.4, 8.6,...
8.0, 9.5, 8.8, 8.1,...
8.3, 9.0, 8.2, 8.6,...
9.0, 8.7, 9.1, 9.2,...
7.9, 8.6, 9.0, 9.1];

s2 = var(amanita)
% s2 = 0.3033

n=length(amanita)
% n = 28

[(n-1) * s2/chi2inv(0.95, n-1), (n-1) * s2/chi2inv(0.05, n-1)]
% ans = 0.2042 0.5071

ratint = @(n) chi2inv(0.95, n-1)./chi2inv(0.05, n-1);

ratint(315:320)
%ans = 1.3007 1.3002 1.2996 1.2991 1.2985 1.2980

ratint(317)
% ans = 1.2996

xbar = mean(amanita); s = sqrt(s2); zquant = norminv(0.975) ;

s/xbar
% ans = 0.0622

Lb = s/xbar - zquant * s/xbar * sqrt( (1/2 + (s/xbar)^2)/(n-1))
% Lb =0.0456

Ub = s/xbar + zquant * s/xbar * sqrt( (1/2 + (s/xbar)^2)/(n-1))
% Ub = 0.0789

[Lb, Ub]
% ans = 0.0456 0.0789

7.26 CLT-Based Con�dence Interval for Normal Variance.
TBA
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7.27 Stent Quality Control.
(a) The distribution of X is Binomial with n Æ50 and p Æ0.01, i.e.,

B in (50,0.01), with the expectation EX Æ50 ¢0.01 Æ0.5, and the variance is
Var X Æ50 ¢0.01 ¢0.99 Æ0.495. The standard deviation of X is

p
Var ( X ) Æp

0.495 Æ0.70356.
Exceeding the mean plus three standard deviations is critic al in the context

of this example. The critical point is: np Å 3 ¢
p

npq Æ0.5 Å 3 ¢0.70356 ¼2.61.
Since X is integer-valued, i.e., takes values 0,1,2,3,4, etc., the process might
be problematic when X ¸ 3.

(b) If one uses exact Binomial distribution, the desired pro bability is P(X ¸
3) Æ1 ¡ P(X · 2) Æ1 ¡ P(X Æ0) ¡ P(X Æ1) ¡ P(X Æ2) Æ1 ¡

¡50
0

¢
0.010 ¢0.9950 ¡

¡50
1

¢
0.011¢0.9949 ¡

¡50
2

¢
0.012¢0.9948 Æ1¡ 0.60500¡ 0.30556¡ 0.07562 Æ0.01382 ¼

0.014.
If one uses Poisson Approximation to the binomial (recall n is large and p is

small), then ¸ Ænp Æ0.5 and, P(X ¸ 3) Æ1¡ P(X · 2) Æ1¡ P(X Æ0)¡ P(X Æ1)¡

P(X Æ2) Æ1¡ 0.50

0! e¡ 0.5 ¡ 0.51

1! e¡ 0.5 ¡ 0.52

2! e¡ 0.5 Æ1¡ 0.60653¡ 0.30326¡ 0.07582 Æ
0.01439 ¼0.014.

The normal approximation is possible, as well, but is not ver y precise be-
cause in this case, X » N (0.5,0.703562). P(X ¸ 3) ÆP(Z ¸ 3¡ 0.5¡ 1/2

0.70356 ) ÆP(Z ¸
2.84269) Æ1 ¡ ©(2.84) Æ0.0023. Such a poor approximation (compared to the
exact value of 0.01381727083060) is expected since normal a symptotics re-
quire the condition: min {np/q,nq/p} È 5.

(c) Since the observation X comes from binomial B in (50, p) distribution
with p unknown, a good estimator is the sample proportion p̂ ÆX /50. This
estimator is unbiased since, Ep̂ ÆEX /50 Æ50¢p/50 Æp.

The p̂ is moment matching (�rst moment) and MLE estimator. In MATLA B

data = binornd(20,0.75,[100,1]); % Simulated data, p = 0.75
[phat,pci] = mle(data,'distribution','binomial',...

'alpha',.05,'ntrials',20)

7.28 Right to Die.
The margin of error is standardly assumed to be L /2 in the 95% con�dence

interval. Since n ¸ 4¢1.962¢0.8¢0.2
0.042 Æ1536.6, one should sample n Æ1537 students.

7.29 Clopper-Pearson and 3/n-Rule Con�dence Intervals.

% Clopper-Pearson and 3/n-rule CI's when X=0
%Hint
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threenrule = @(n,alpha) -log(alpha)./n;
clopper = @(n,alpha) 1-(alpha/2).^(1./n);
n = (10:10:200)'; alpha = 0.05;
[clopper(n,alpha) threenrule(n, alpha)]

7.30 Seventeen Pairs of Rats, Carbon Tetrachloride, and Vit amin B.

% Seventeen Pairs of Rats, Carbon Tetrachloride, and Vitami n B12
%(b)

binopdf(7, 17, 7/17)

% (c)
lb = 7/17 - norminv(0.975) * sqrt( (7/17 * 10/17)/17) %lb=0.1778
ub = 7/17 + norminv(0.975) * sqrt( (7/17 * 10/17)/17) %ub=0.6457

lb1 = 140/340 - norminv(0.975) * sqrt( (140/340 * 200/340)/340 )
%lb1 = 0.3595

ub1 = 140/340 + norminv(0.975) * sqrt( (140/340 * 200/340)/340 )
%ub1 = 0.4641

% (d)
ub - lb %ans =0.4679 too large!
%
n = norminv(0.975)^2/ 0.2^2 %n=96.0365
ssize = ceil(n) %ssize=97

7.31 Hemocytometer Counts.
TBA

7.32 Predicting Alkaline Phosphatase.
TBA

7.1 Additional Problems

7.a1 Bernoulli's p2. Let X1, X2, . . . , X n be a sample from Bernoulli B er(p)
distribution, where parameter p2 is to be estimated. The MLE is ± Æ(X )2.

(a) What is the bias of ±?
(b) What is the variance of ±?

It is known that X is the MLE for p, where E X Æp and V ar X Æp(1 ¡ p)/n.
Thus, ( X )2 is the MLE for p2 according to the invariance property of MLEs
(page 235). According to (5.11), with ¹ Æp, ¾2 Æp(1 ¡ p)/n and g(x) Æx2,
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E± Æp2 Å 1/2¢2¢p(1 ¡ p)/n Æp2 Å p(1 ¡ p)/n,

so the bias is p(1 ¡ p)/n.
(b) The variance is (2 p)2 ¢p(1 ¡ p)/n Æ4p3(1 ¡ p)/n.

7.a2 Shrinking X̄ Lowers MSE. Let X1, X2, . . . , X n be a sample from a
distribution with mean µ and known variance ¾2. The standard estimator of
µ, X̄ , has MSE (and variance because X̄ is unbiased) equal to ¾2/n.

Show that MSE of ¸ X̄ is minimized by ¸ ¤ Æ µ2

µ2Å¾2/n
Ç 1. Thus, the shrinkage

estimator ¸ ¤ X̄ lowers MSE which is ¸ ¤ ¾2/n.

MSE ÆE(¸ X̄ ¡ µ)2

Æ¸ 2E X̄ 2 ¡ 2¸µ E X̄ Å µ2

Æ¸ 2(¾2/n Å µ2) ¡ 2¸µ 2 Å µ2

as quadratic in ¸ is minimized for ¸ ¤ Æ µ2

¾2/nÅµ2 .

For the value ¸ Æ¸ ¤ the MSE becomes ¸ ¤¾2/n. Of course, in practice µ is

not known (it is estimated), and “plug-in” shrinker ˆ¸ ¤ Æ X 2

¾2/nÅX 2
is used.





Chapter 8

Bayesian Approach to Inference

8.1 Exponential Lifetimes.
TBA

8.2 Uniform - Pareto.
TBA

8.3 Nylon Fibers.

(a) If T is exponential E(¸ ) where ¸ is the rate parameter, then ET Æ1/¸ .
The moment matching estimator is ˆ̧ mm Æ1/T̄ .

Here T̄ Æ3Å13Å8
3 Æ8, so ˆ̧ mm Æ1/8 Æ0.125.

The likelihood is:

¸ e¡ 3¸ £ ¸ e¡ 13¸ £ ¸ e¡ 8¸ Æ¸ 3e¡ 24¸ .

(b) The posterior for ¸ is proportional to the likelihood £ prior,

¸ 3e¡ 24¸ £ ¸ ¡ 1/2 Æ¸ 5/2e¡ 24¸ Æ¸ 7/2¡ 1e¡ 24¸ ,

which can be recognized as Gamma Ga(7/2,24) distribution. Since the mean
of Ga(®, ¯ ) is ®/¯ , the mean of the posterior is

ˆ̧ B Æ
7/2

24
Æ0.1458,

which is the Bayes estimator, in this case.
(c) TBA

8.4 Gamma – Inverse Gamma.

53
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The likelihood for X » Ga
¡ n

2 , 1
2µ

¢
and the prior µ » I G (®, ¯ ) are propor-

tional to

1

(2µ)n/2
exp

n
¡

x

2µ

o
, and

1

µ®Å1
exp

½
¡

¯

µ

¾
,

respectively, if all constant terms are ignored. The produc t is proportional to

1

µn/2Å®Å1
exp

½
¡

x/2Å ¯

µ

¾
,

which can be recognized as the inverse gamma I G
¡ n

2 Å ®, x
2 Å ¯

¢
distribution.

8.5 Negative Binomial - Beta.
TBA

8.6 Poisson - Gamma Marginal.
TBA

8.7 Exponential - Improper.
TBA

8.8 Normal Precision – Gamma.
(a) The likelihood is proportional to

L (µ) /
p

µ exp
½

¡
µx2

2

¾
.

The log-likelohood is

` (µ) Æ
1

2
logµ ¡

x2µ

2
Å constant ,

with �rst derivative

` 0(µ) Æ
1

2µ
¡

x2

2
.

Solution of ` 0(µ) Æ0 is µ̂ Æ 1
x2 , which represents the candidate for MLE esti-

mator of µ. Since ` 00(µ) Æ ¡ 1
3µ2 Ç 0, the likelihood is maximized at 1

x2 and µ̂
represents the MLE.

(b) If the prior is µ » Ga(r , ¸ ), then the posterior is proportional to

¼(µjx) / µr Å1/2¡ 1 exp
½

¸ Å
x2

2

¾
,
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which can be recognized as gamma Ga(r Å1/2, ¸ Å x2/2) distribution. The Bayes
estimator for µ is the mean of posterior,

µ̂B Æ
r Å 1/2

¸ Å x2/2
Æ

2r Å 1

2¸ Å x2
.

This Bayes estimator could be represented as a compromise be tween MLE
and prior mean but with the weights depending on the observat ion:

µ̂ Æ
x2

2¸ Å x2
£

1

x2
Å

2¸

2¸ Å x2
£

r

¸
.

Note that in the case when X Æ0 the MLE is not de�ned, but its weight is
0, and the precision is estimated by the prior mean. The repre sentation as
a linear combination of MLE and prior mean with weights free o f X is not
possible, although one can represent the Bayes estimator as

1

! £ 1
µ̂mle

Å (1 ¡ ! )£ 1
µ̂prior

, ! Æ
1

2r Å 1
.

(c) When X Æ ¡2 is observed, and r Æ1/2 and ¸ Æ1, the posterior becomes
gamma with shape parameter 1 and rate parameter 3, which is in fact the
exponential distribution E(3). Indeed,

¼(µjx Æ ¡2) / µ1/2Å1/2¡ 1 exp
½

1Å
(¡ 2)2

2

¾
Æe¡ 3µ.

The Bayes estimator is the mean of the posterior, in this case 1/¸ Æ1/3. The
equal-tail credible set is found by evaluation quantiles of the posterior. The
p-quantile of exponential distribution, qp, is easy to �nd by directly solving
an equation involving the cdf: F (qp) Æp i.e., 1 ¡ e¡ ¸ pq Æp. Thus, the 0.025-
and 0.975-quantiles when ¸ Æ3 are

q0.025 Æ ¡
log(1 ¡ 0.025)

¸
Æ0.0084, q0.975 Æ ¡

log(1 ¡ 0.975)

¸
Æ1.2296,

which are lower and upper bounds of the equal-tail 95% credib le set for µ.
(d) The WinBUGS program approximating estimators from (c) i s simple,

model
x ~ dnorm(0, theta)
theta ~ dgamma(0.5, 1)

data
list(x=-2)

inits
list( theta = 1)

The output is
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mean sd MC_error val2.5pc median val97.5pc start sample
theta 0.3326 0.3312 0.001101 0.008439 0.2315 1.217 1001 100 000

The MCMC approximation of Bayes' estimator for µ is 0.3326, quite close
to the exact value of 1/3. Also, the 95% credible set is [0.008 44, 1.217], which
is close to the exact set [0.0084, 1.2296].

8.9 Bayes Estimate in a Discrete Case.

TBA

8.10 Histocompatibility.

Gamma Ga(r , ¹ ) distribution for ¸ has a density

¼(¸ ) Æ
¹ r ¸ r ¡ 1 exp{¡ ¹¸ }

¡ (r )
, ¸ È 0.

Here r Æ2 and ¹ Æ1, so ¼(¸ ) Æ¸ e¡ ¸ , since ¡ (2) Æ1.
The likelihood is Poisson, f (xj¸ ) Æ¸ x

x! exp{¡ ¸ }, and since X Æ1 is observed, the likelihood

is ¸ e¡ ¸ .
The posterior is proportional to the product of the likeliho od and prior,

¸ e¡ ¸ £ ¸ e¡ ¸ Æ¸ 2 e¡ 2¸ .

From this expression we conclude that the posterior is Gamma Ga(3,2). For any Y »
Ga(r , ¹ ), the mean EY is r /¹ . Thus, the posterior mean is 3/2=1.5, and this is a Bayes esti-
mator of ¸ . The posterior variance is 3/2 2 and posterior standard deviation is

p
3/2 Æ0.8660.

The supplied WinBUGS program gives the following MCMC appro ximation to the solu-
tion:

mean sd MC_error val2.5pc median val97.5pc start sample
lambda 1.495 0.863 0.002706 0.3107 1.332 3.609 10001 100000

The median is 1.332 and the 95% credible set for ¸ is [ ¡ 0.3107,3.609].

8.11 Neurons Fire in Potter's Lab 2.

(a) The likelihood is proportional to ¸
P 50

i Æ1 X i exp{¡ 50¸ }, where
P

X i Æ989 is
the sum of all counts (total number of �rings).

(b) A gamma prior with mean 15 is not unique, for any x, Ga(15x, x) is
such a prior. However, the variances depend on x, For example for priors
Ga(150,10),Ga(15,1), Ga(1.5,0.1),Ga(0.15,0.01), etc. have variances 1.5, 15,
150, 1500, etc. The variances indicate the degree of certain ty of expert that
the prior mean is 15. Large variances correspond to non-info rmative choices.

Since the sample variance of 50 observations is about 15, it i s reasonable to
take prior with larger variance, say Ga(3,0.2).

(c) Bayes estimator for ¸ is w £ X̄ Å (1 ¡ w)£ 15 Æwhere w Æxxxx. The MLE
is X̄ and Bayes estimator slightly shrinks toward 0.

(d) The expectation of the lognormal is exp {¹ Å ¾2}. If ¾2 Æ1 then ¹ Æ
log(15) ¡ 1/2 Æ2.2081 gives the expectation 15.
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model
for (i in 1:50)

X[i] ~ dpois(lambda)

lambda ~ dlnorm(2.2081, 1)
#mu = 2.2081, tau =1 => mean 15

DATA
list(X=c(
20, 19, 26, 20, 24, 21, 24, 29, 21, 17,
23, 21, 19, 23, 17, 30, 20, 20, 18, 16,
14, 17, 15, 25, 21, 16, 14, 18, 22, 25,
17, 25, 24, 18, 13, 12, 19, 17, 19, 19,
19, 23, 17, 17, 21, 15, 19, 15, 23, 22))

INITS
list( lambda = 5)

8.12 Eliciting a Beta Prior I.
TBA

8.13 Eliciting a Beta Prior II.
TBA

8.14 Eliciting a Weibull Prior.
TBA

8.15 Bayesian Yucatan Pigs.

model
for (i in 1:nc)

x[i] ~ dbeta(a, a)

a ~ dgamma(0.001, 0.001)

DATA
list(nc=120, x = c(
0.6121, 0.5789, 0.6053, 0.6168, 0.6237, 0.5837, 0.6500, 0. 6274,
0.6726, 0.5163, 0.5374, 0.5258, 0.5374, 0.5405, 0.5184, 0. 7179,
0.7332, 0.5716, 0.7521, 0.7232, 0.6884, 0.5532, 0.5268, 0. 5211,
0.5484, 0.5821, 0.6205, 0.7742, 0.6421, 0.6842, 0.7405, 0. 6879,
0.6532, 0.8768, 0.8221, 0.8421, 0.7853, 0.8758, 0.7853, 0. 6726,
0.6411, 0.7216, 0.7416, 0.6837, 0.6879, 0.3979, 0.5789, 0. 2547,
0.2758, 0.2800, 0.2495, 0.4968, 0.5679, 0.2953, 0.5679, 0. 5111,
0.6884, 0.4253, 0.4095, 0.7279, 0.6789, 0.4884, 0.6858, 0. 2500,
0.3405, 0.2211, 0.3547, 0.3863, 0.2674, 0.3974, 0.4921, 0. 3047,
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0.8495, 0.4668, 0.3832, 0.1616, 0.1137, 0.0479, 0.3347, 0. 6700,
0.3168, 0.3232, 0.3711, 0.3437, 0.3021, 0.7853, 0.5000, 0. 5711,
0.3984, 0.2211, 0.1479, 0.1026, 0.2737, 0.3632, 0.2279, 0. 3184,
0.4321, 0.3805, 0.7626, 0.5111, 0.4316, 0.4705, 0.7974, 0. 6926,
0.8200, 0.9589, 0.6000, 0.5684, 0.6489, 0.6311, 0.5032, 0. 5032,
0.5779, 0.4774, 0.3074, 0.4995, 0.4384, 0.2942, 0.3132, 0. 4205))

INITS
list(a =1)

8.16 Eliciting a Normal Prior.
¹ Æ3.99382 ¼4, ¾Æ1.53734.

8.17 Is the Cloning of Humans Moral?

model { anticlons ~ dbin(prob,npolled) ;
anticlons.missing ~ dbin(prob,nmissing)
prob ~ dbeta(1,1)}

Data
list(anticlons=882,npolled= 1000, nmissing=62)

8.18 Poisson Observations with Truncated Normal Rate.
TBA

8.19 Counts of Alpha Particles.
Consult the �le rutherford.odc .

8.20 Rayleigh Estimation by Zero-Trick.
TBA

8.21 Predictions in Poisson/Gamma Model.
TBA

8.22 Estimating Chemotherapy Response Rate.
TBA

8.1 Additional Problems

8.a1 Fibrinogen. Fibrinogen is a soluble plasma glycoprotein, synthesized
by the liver, that is converted by thrombin into �brin during blood coagulation.
Marnie takes blood test and �nds that her level of �brinogen i s 207 mg/dL. The



8.1 Additional Problems 59

test results are accurate up to a random error which is normal with mean 0
and standard deviation of 12 mg/dL.

The normal range of �brinogen is 150-400 mg/dL and Marnie put s a uni-
form prior over this range, dunif(150, 400) .

(a) What is the Bayes estimator of the true level of �brinogen given this
uniform prior?

(b) Report the Inference>Samples>stats output from WinBUGS. What
is the 95% Credible Set for the parameter?

(c) What is the classical 95% CI (Hint: Sample Size = 1, ¾known). Compare
Bayesian answers with classical (Compare the parameter est imates and 95%
CI with Bayesian counterparts).

TBA

8.a2 Elicitation of Gamma Prior. You are eliciting Gamma prior on µ,

¼(µ) / µexp
½

¡
µ

¯

¾
, µ ¸ 0, ¯ È 0.

An expert tells you that the “most probable” value for µ is 2. If you interpret
the “most probable” as the mode of this prior, fully specify t he prior.





Chapter 9

Testing Statistical Hypotheses

9.1 Public Health.
TBA

9.2 Testing IQ.
TBA

9.3 Bricks.

%(a)
n = 100; alpha = 0.05; Xbar = 395; s=20; mu0 = 400;
t = (Xbar - mu0)/(s/sqrt(n))
%t = - 2.5
% RR
% H_1: mu < mu0, RR = (-infinity, tinv(alpha, n-1))
tinv(alpha, n-1)
% ans = - 1.6604
% RR = (- infty, -1.6604), statistics t in RR, reject H0
%
% pvalue
p = tcdf(t, n-1)
% p = 0.0070

%(b)
% normal approx
n = 4 * norminv(0.975)^2 * 20^2/4^2
% n = 384.1459 approx 385.
% exact
f = @(n) n - 4 * tinv(0.975, n-1).^2 * 20^2/4^2
fzero(f, 500)
% ans = 386.5689
% n approx 387

61
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9.4 Soybeans.

p-value= 0.295 is larger than alpha= 0.05 .
t-statistic= -1.058 .
The rejection region cut-point is (+/-) 1.677 .

9.5 Great white shark.
TBA

9.6 Serum Sodium Levels.

[ t Æ145.55¡ 140
9.455/

p
20

Æ2.625104.]

9.7 Weight of Quarters.
Z Æ ¡2.17478; p ¡ val Æ0.0148

9.8 Dwarf Plants.

p0=0.75; q0=1-p0; n=200;
z = (phat - p0)/sqrt( p0 * q0/n)

%z =-2.2862
normcdf(z)
% ans = 0.0111 (p-value against one sided hypothesis)
norminv(0.05)
%ans = -1.6449 (RR=(-infinity, -1.65])
%
lb = phat - norminv(1-0.05/2) * sqrt(phat * (1-phat)/n )

%lb = 0.6154
rb = phat + norminv(1-0.05/2) * sqrt(phat * (1-phat)/n )

%rb =0.7446

model{
X ~ dbin(p, n)
p ~ dbeta(1,1)

probH1 <- step(0.75-p)
probH0 <- 1-probH1
}

DATA

list( n= 200, X = 136)
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INIT

list(p=0)

9.9 Eggs in Nest.

[ X̄ Æ4.53,(4.528571), s2 Æ1.093, t Æ ¡3.745, t69,0.925 ¼z0.975 Æ1.96.]

9.10 Penguins.

X̄ Æ44, s Æ2.1122, t Æ ¡1.7714, p-value=0.0500, t0.05,13 Æ ¡1.7709. No deci-
sion at signi�cance level ® Æ0.05.

9.11 Hypersplenism and White Blood Cell Count.

The solution in MATLAB

n=16; xbar=5213; mu0 = 7200; s=1682; alpha = 0.05;
t = (xbar - mu0)/(s/sqrt(n))
%t = -4.7253
tcdf(t,n-1) %p-value
%ans = 1.3543e-004
tinv(alpha, n-1) %RR bound
%ans = -1.7531

% Find the power against alternative H _1: mu=5800

esizet = abs(7200-5800)/s;
powert = nctcdf( -tinv(1-alpha, n-1), n-1,-esizet * sqrt(n))
% powert = 0.9369
ttgrc%
%power 90%, alpha 5% one sided,
%for the effect size 600/1682 = 0.3567
beta = 0.1;

%Approx sample size
ss = (norminv(1-beta) + norminv(1-alpha))^2/0.3567^2
%sss = 67.3074
%Exact sample size
f = @(n) nctcdf(-tinv(1-alpha, n-1),n-1,-sqrt(n) * 0.3567)-(1-beta);
sss = fzero(f,ss)
%%sss = 68.6830

9.12 Jigsaw.
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Sol. (a) [5.783 § 2.1098 2.784p
18

] Æ [4.3986,7.1674]. (b) t Æ1.1932, t17,0.95 Æ

1.7396, t Ç t17,0.95 - Do not Reject.

9.13 Anxiety.
TBA

9.14 Aptitude Test.
TBA

9.15 Rats and Mazes.

xbar = 15.4; mu0 = 15; s=2; mu1 = 15.5;
t = (xbar - mu0)/(s/sqrt(80))

%t = 1.7889
crit = tinv(0.99, 79)

%crit = 2.3745
pval = 1-tcdf(2.3745,79)

%pval = 0.0100
pval = 1-tcdf(1.7889,79)

%pval = 0.0387
pow = normcdf( norminv(0.01) + 0.6 * sqrt(80)/s)

%pow = 0.6394
ss = 2^2 * (norminv(0.99) + norminv(0.90))^2/(0.6^2)

%ss = 144.6326

9.16 Hemopexin in DMD Cases I.
TBA

9.17 Retinol and Cooper-de�cient Diet.

(a) Since population variance ¾2 is not known, we use t-quantiles in the
con�dence interval.

xbar = 3.3; s=1.4; n=9; conf=0.95;
alpha = 1 - conf;
int =[xbar - tinv(1-alpha/2,n-1) * s/sqrt(n), ...

xbar + tinv(1-alpha/2,n-1) * s/sqrt(n)]
%int = 2.2239 4.3761

The 95% CI for the unknown mean is [2 .2239,4.3761].
(b) We test the hypothesis H 0 : ¹ Æ1.6 versus the alternative H 1 : ¹ È 1.6.

xbar = 3.3; s=1.4; n=9; mu0 = 1.6;
t = (xbar - mu0)/(s/sqrt(n))

%t = 3.6429
%RR approach

tinv(1-alpha, n-1)
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%ans = 1.8595
%t=3.6429 > 1.8595, reject H _0

%p-value approach
p = 1-tcdf(t, n-1)

%p = 0.0033
%0.0033 < 0.05 reject H _0

(c) The power of the test is 1 ¡ ¯ Æ©
³
z® Å j¹ 1¡ ¹ 0j

p
n

¾

´
.

alpha=0.05; mu0=1.6; mu1=2.4; n=9; sigma=1.4;
power = normcdf( norminv(alpha) + abs(mu0 - mu1) * sqrt(n)/sigma)
% or: power = 1-normcdf( norminv(1-alpha) - abs(mu0 - mu1) * sqrt(n)/sigma)
%power = 0.5277

Not much power is achieved with a sample of size n Æ9, 1 ¡ ¯ ¼53%. Even
this 53% is an optimistic assessment of the power.

More precise determination of power is done using t-distrib ution instead of
normal.

alpha=0.05; mu0=1.6; mu1=2.4; n=9; sigma=1.4;
power = 1-nctcdf( tinv(1-alpha, n-1),n-1,abs(mu0-mu1) * sqrt(n)/sigma)

% or power = nctcdf( tinv(alpha, n-1),n-1,-abs(mu0-mu1) * sqrt(n)/sigma)
%power = 0.4693

(d)

n = ( (norminv(0.95) + norminv(0.80)) * 1.4/(1.6 - 2.1))^2
%n = 48.4712

Sample size necessary for power of 80% is n Æ49. If one wants to be precise:

alpha=0.05; mu0=1.6; mu1=2.1; sigma=1.4;
for n=10:100
[n 1-nctcdf( tinv(1-alpha, n-1),n-1,(mu1-mu0) * sqrt(n)/sigma)]
end

% ans = 10.0000 0.2743

% ans = 11.0000 0.2946
% ...

% ans = 49.0000 0.7938

% ans = 50.0000 0.8011

% ans = 51.0000 0.8081

% ans = 52.0000 0.8149
% ...

Thus, sample size needed for power of 80% is n Æ50 rather than n Æ49 if
one uses exact calculations. More elegant solution is
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f = @(n) 1-nctcdf( tinv(1-alpha, n-1),n-1,(mu1-mu0) * sqrt(n)/sigma) - 0.8
fzero(f, 100) %49.8523

If the two-sided alternative is selected, H 1 : ¹ 6Æ1.6, then the p-value in 1.2
is p Æ0.0066. The power in 1.3 is only about 40%.

alpha=0.05; mu0=1.6; mu1=2.4; n=9; sigma=1.4;
power = normcdf( norminv(alpha/2) + abs(mu0 - mu1) * sqrt(n)/sigma)

% power =0.4030

Also, for the two sided alternative the sample size is approx imately n Æ62.

n = ( (norminv(0.975) + norminv(0.80)) * 1.4/(1.6 - 2.1))^2 %
%n = 61.5352

(e)

model{
precxbar <- n * precx
xbar ~ dnorm( mu, precxbar )
mu ~ dnorm(0, 0.0001)

#s = 1.4, s^2 = 1.96, prec = 1/1.96 =0.51
#X gamma(a,b) -> EX=a/b, Var X = a/b^2

precx ~ dgamma( 0.00051, 0.001 )
indh1 <- step(mu - 1.6)
sigx <- 1/sqrt(precx)
}

list( xbar = 3.3, n=9 )

list( mu = 1, precx = 1 )

9.18 Aniline.
TBA

9.19 DNA Random Walks.

(a) The sample size is calculated as n Æ
³

z1¡ ®/2Åz1¡ ¯

e

´2
, or in MATLAB for the

speci�ed ®,1 ¡ ¯ , em], and two-sided alternative, as

n = (0.03/0.02)^2 * (norminv(0.975) + norminv(0.9))^2 %n=23.6417

This n is to be rounded to larger integer, here n Æ24, and sampling is to follow.
The exact prospective power for n Æ24 observations is

pow = normcdf( -norminv(0.975) + 0.02/(0.03/sqrt(24)) )
%pow = 0.9042
%

tstat = (mean(H) - 0.6)/(std(H)/sqrt(24))
% tstat = -1.3938
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%pvalue
2* tcdf(tstat,n-1)

% 0.1767
% p-value > 5% -- do not reject H _0
%Rejection region
%(-infinity, tinv(0.025, 24-1)] U [tinv(0.975, 24-1),inf inity)

tinv(0.025,n-1) %-2.0687
tinv(0.975,n-1) % 2.0687

%(-infinity, -2.0687] U [2.0687, infinity)

%(b) Because of symmetry of t-distribution, there are sever al
% equivalent ways of getting the retrospective power.
% It is found to be 89.28%

pow = nctcdf( -tinv(1-alpha/2, n-1), n-1,(mu1-mu0) * sqrt(n)/s) + ...
1 - nctcdf( tinv(1-alpha/2, n-1), n-1,(mu1-mu0) * sqrt(n)/s)

% 0.8928
pow2 = nctcdf( tinv(alpha/2, n-1), n-1,-abs(mu1-mu0) * sqrt(n)/s) + ...

1- nctcdf(-tinv(alpha/2, n-1), n-1, -abs(mu0-mu1) * sqrt(n)/s)
% 0.8928

pow = nctcdf( -tinv(1-alpha/2, n-1), n-1,(mu1-mu0) * sqrt(n)/s) + ...
+nctcdf(-tinv(1-alpha/2, n-1), n-1,(mu0-mu1) * sqrt(n)/s)

% 0.8928
pow = nctcdf( tinv(alpha/2, n-1), n-1,(mu1-mu0) * sqrt(n)/s) + ...

+nctcdf(tinv(alpha/2, n-1), n-1,(mu0-mu1) * sqrt(n)/s)
% 0.8928

pow = nctcdf( -tinv(1-alpha/2, n-1), n-1,(mu1-mu0) * sqrt(n)/s) + ...
+nctcdf(-tinv(1-alpha/2, n-1), n-1,(mu0-mu1) * sqrt(n)/s)

% 0.8928
pow = nctcdf( tinv(alpha/2, n-1), n-1,-abs(mu1-mu0) * sqrt(n)/s) + ...

+nctcdf(tinv(alpha/2, n-1), n-1, abs(mu0-mu1) * sqrt(n)/s)
% 0.8928

9.20 Binding of Propofol.

(a)

pbar = 0.93; s=0.12; n=87; p0 = 0.96;
t = (pbar - p0)/(s/sqrt(n))
%t = -2.3318

tinv(0.05, n-1)
%ans = -1.6628

tinv(0.01, n-1)
%ans = -2.3705

pval= tcdf(-2.3318, n-1)
%pval = 0.0110
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From the above calculations we see that H 0 is rejected at 5% signi�cance
level since t 2 (¡1 ,¡ 1.6628]. The H 0 is not rejected at ® Æ1% since t Æ ¡2.3318
does not fall in rejection region ( ¡1 ,¡ 2.3705].

This is con�rmed by looking at p-value. P-value of 0.0110 is smaller than
5% but larger than 1% .

(b) Normal approximation can be used because of Central Limi t Theorem.
In fact n Æ87 proportions are averaged. In this case, H 0 is rejected even at 1%
level since p-value is 0.0099.

norminv(0.05)
%ans = -1.6449

norminv(0.01)
%ans = -2.3263

pval = normcdf(-2.3318)
%pval = 0.0099

9.21 Improvement of Surgical Procedure.
TBA

9.22 Cancer Therapy.

%(a) H0 p = 0.4 vs H1: p > 0.4
%(b)
norminv(1-0.05) %1.6449; since z is in [1.6449, infinity)
% H0 rejected
%(c)
pval = 1 - normcdf(1.7321) %0.0416 < 0.05, H0 rejected
%(d) see text page 339
p1 = 0.475;
n = p0 * (1-p0) * (norminv(1-0.05) + norminv(0.85) * sqrt(p1 * (1-p1)/(p0 * (1-p0))) )^2/(p0-p1)^2
%n=311.3479 approx 312

3.23 Is the Cloning of Humans Moral?

clear all
n=1000; phat = 0.88;
p0=0.9; q0=1-p0;
Z = (phat - p0)/sqrt(p0 * q0/n)
%Z = -2.1082

crit = norminv(0.975)
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%crit = 1.9600
% The rejection region is (-infinity, -1.96) U (1.96, infini ty)
% and Z=-2.1082 falls in. Reject H _0.

pval = 2 * normcdf(-2.1028)
% pval = 0.0355
% pval < 0.05 = alpha => Reject H _0.

n=1000; phat = 0.88; qhat=1-phat;
[phat - norminv(0.975) * sqrt(phat * qhat/n) ...

phat + norminv(0.975) * sqrt(phat * qhat/n)]

% ans = 0.8599 0.9001
% 0.9 belongs to CI (tight!)

Recall that the power is 1 ¡ ¯ Æ©
hq

p0q0
p1q1

³
z®/2 Å jp0¡ p1j

p
np

p0q0

´i
.

normcdf( sqrt( 0.9 * 0.1/(0.85 * 0.15)) * (norminv(0.025) +...
abs(0.9-0.85) * sqrt(1000)/sqrt(0.9 * 0.1)) )

%ans = 0.9973

9.24 Smoking Illegal?
TBA

9.25 DNA of Spider Monkey.
TBA





Chapter 10

Two Samples

10.1 Testing Piaget.
TBA

10.2 Smoking and COPD.

We test hypotheses
H 0 : ¹ 1 Æ¹ 2 versus H 1 : ¹ 1 Ç ¹ 2, that is H 1 : ¹ 1 ¡ ¹ 2 Ç 0.
Since the population variances are assumed equal we �rst �nd pooled stan-

dard deviation,

sp Æ

s
(9 ¡ 1)¢7,0292 Å (11 ¡ 1)¢7,5342

9Å 11 ¡ 2
Æ

p
53,492,572 ¼7,313.86.

Then,

t Æ
X̄1 ¡ X̄2

sp
p

1/n1 Å 1/n2
Æ

16,156 ¡ 24,672

7,313.86
p

1/9Å 1/11
Æ ¡2.59.

The proper Rejection Region cut-point is tinv(0.05, 18) , since the statis-
tic t has 11 Å 9 ¡ 2 Æ18 degrees of freedom, and the rejection region is
RR Æ(¡1 ,¡ 1.7341]. The statistic t falls in the RR and H 0 is rejected at the
level ® Æ0.05. This agrees with the p-value approach since the p-value is
tcdf(-2.59, 18)=0.0092 < 0.05.

10.3 Noradrenergic Activity.

(a)

x1bar = 279; x2bar = 198;
s1 = 122; s2 = 89; n1=17; n2 = 29;

71
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t1 = (x1bar - 170)/(s1/sqrt(n1))
% t1 = 3.6838

pval1 = 1 - tcdf( t1, n1-1)
% pval1 = 0.0010

t2 = (x2bar - 170)/(s2/sqrt(n2))
% t2 = 1.6942

pval2 = 1 - tcdf( t2, n2-1)
% pval2 = 0.0507

Thus, H 0
0 is rejected (p-value 0.001) while H 00

0 is not rejected at 5% level
(p-value = 0.0507).

(b)

s1 = 122; s2 = 89; n1=17; n2 = 29;
f = (s1^2)/(s2^2)

% f = 1.8791

pval = 2 * (1 - fcdf( 1.8791, n1-1, n2-1))
% pval = 0.1397

Hypothesis H 0 : ¾2
1 Æ¾2

2 is not rejected, p-value is 0.1397. Thus, in testing
equality of the means one should use pooled sample standard d eviation.

(c)

x1bar = 279; x2bar = 198;
s1 = 122; s2 = 89; n1=17; n2 = 29;

%pooled
sp = sqrt( ((n1-1) * s1^2 + (n2-1) * s2^2 )/(n1 + n2 - 2 ))

% sp = 102.2399; should be between s1 and s2.

t = (x1bar - x2bar)/(sp * sqrt(1/n1 + 1/n2) )
% t = 2.5936

pval = 1-tcdf( t, n1+n2 -2) %alternative mu-nu>0
% pval = 0.0064

pval = 2 * tcdf( -abs(t), n1+n2 -2) %alternative mu-nu diff 0
% pval = 0.0128

10.4 Testing Variances.

(a)

2 * min( fcdf(f,n1-1, n2-1), 1- fcdf(f, n1-1, n2-1) )
%ans = 0.9727

(b) The problem is in the condition F È 1. The universally correct p value
is obtained if the condition F È 1 is replaced by F È median( Fn1¡ 1,n2¡ 1). The
medians of F -distributions are generally close to 1, but range between 0 .4549
and 2.1981, and all F statistics observed in this range may potentially lead to
a wrong two-sided p-value.
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%Observed value of F is
f = var(x)/var(y)
% f = 1.0429
%The criteria F > 1 suggest p-value
2 * (1 - fcdf(f,n1-1, n2-1))
% 1.0273 > 1
%The problem is that F < median(F(n1-1, n2-1))
med = finv(0.5, n1-1, n2 -1)
%med = 1.0687 > F > 1,
%and 2 * fcdf(f,n2-1, n1-1) should be used

10.5 Mating Calls.
TBA

10.6 Fatigue.
TBA

10.7 Mosaic Virus.
TBA

10.8 Dopamine ¯ -hydroxylase Activity.

(a1) Solution when ¾1 Æ¾2 is assumed. Polled sample variance is s2
p Æ((n1¡

1)£ s2
1Å (n2 ¡ 1)£ s2

2)/(n1Ån2 ¡ 2) Æ((9¡ 1)£ s2
1Å (12¡ 1)£ s2

2)/(9Å12¡ 2) Æ55.8399.

The polled sample standard deviation is sp Æ
q

s2
p Æ7.4726.

Statistic: t Æ X̄1¡ X̄2

sp
p

1/n1Å1/n2
Æ4.3/(7.4726£

p
1/9Å 1/12) Æ1.3050.

The critical value is: t n1Ån2¡ 2,® Æt19,0.05 Æ1.7291.
Rejection Region is [1 .7291,1 ).
MATLAB code for p-value is

ssize = (s1^2 + s2^2) * (norminv(0.95)+norminv(0.9))^2/(0.005^2)
% ssize = 17.8128 approx 18 each

1 - tcdf(1.3050, 19)
% ans = 0.1037

(b1) 99% CI for ¹ 1 ¡ ¹ 2 is: [4 .3 ¡ 7.4726£
p

1/9Å 1/12 £ 2.8609,4.3Å 7.4726£p
1/9Å 1/12 £ 2.8609] Æ[¡ 5.127013.7270]. Here t19,0.005 Æ2.8609.

ssize = (s1^2 + s2^2) * (norminv(0.95)+norminv(0.9))^2/(0.005^2)
% ssize = 17.8128 approx 18 each

tinv(0.995, 19)
% ans = 2.8609

(a2) Solution when no assumption about ¾'s is made. Statistic is t Æ X̄1¡ X̄2q
s2

1/n1Ås2
2/n2

Æ

4.3/
p

8.162/9Å 6.932/12 Æ1.2735.
This statistic has approximately ¢ degrees of freedom,
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¢ Æ
[(s2

1/n1)Å (s2
2/n2)]2

(s2
1/n1)2

n1¡ 1 Å
(s2

2/n2)2

n2¡ 1

nasty!
¯¯

_

¢ Æ(8.162/9Å6.932/12)2/((8.162/9)2/8Å (6.932/12)2/11) Æ15.6627 By round-
ing to the smaller integer, we get df = 15. (integer taken beca use of tables)

t15,0.05 Æ1.7531, although in principle it is possible to �nd t15.6627,0.05.

ssize = (s1^2 + s2^2) * (norminv(0.95)+norminv(0.9))^2/(0.005^2)
% ssize = 17.8128 approx 18 each

tinv(0.95, 15.6627)
%ans = 1.7482

Rejection region is [1 .7487,1 ). Since t Æ ¡1.2050 È ¡ 1.7487, do not reject
H 0.

(b2) 99% CI for ¹ 1 ¡ ¹ 2 is: [ ¡ 4.3¡ 2.9309£
p

8.162/9Å 6.932/9,¡ 4.3Å2.9309£p
8.162/9Å 6.932/9] Æ[, ]. Here t15.5911,0.995 Æ2.9309.

model{
for(i in 1:2) {
xbar[i] ~ dnorm(mu[i], precxbar[i])
mu[i] ~ dnorm(0, 0.00001)
n1[i] <- n[i]-1
ch[i] ~ dchisqr(n1[i])
precx[i] <- ch[i]/(n1[i] * s[i] * s[i])
precxbar[i] <- n1[i] * precx[i]
sigma[i] <- 1/sqrt(precx[i]) }
teststat <- mu[1]-mu[2]
test <- step(teststat)
}

DATA
list( n = c(9, 12), xbar=c(39.8, 35.5), s=c(8.16, 6.93) )

INITS
list(mu=c(0,0), ch=c(1,1))

mean sd MC error val2.5pc median val97.5pc start sample
mu[1] 39.79 3.339 0.009841 33.1 39.79 46.43 1001 100000
mu[2] 35.48 2.323 0.007239 30.86 35.48 40.11 1001 100000

sigma[1] 9.036 2.646 0.009805 5.508 8.525 15.58 1001 100000
sigma[2] 7.463 1.795 0.006236 4.901 7.16 11.81 1001 100000

test 0.8653 0.3414 0.001074 0.0 1.0 1.0 1001 100000
teststat 4.309 4.061 0.012 -3.723 4.304 12.37 1001 100000

10.9 5-HIAA Levels.
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Patients =[263 288 432 890 ...
450 1270 220 350 ...
283 274 580 285 ...
524 135 500 120];

Controls =[60 119 153 588 ...
124 196 14 23 ...

43 854 400 73];

xbar1 = mean(Patients) %429
xbar2 = mean(Controls) %220.5833
s1 = std(Patients) %294.6718
s2 = std(Controls) %261.8190
n1= length(Patients) %16
n2 = length(Controls) %12
sp = sqrt( ((n1-1) * s1^2 + (n2-1) * s2^2)/(n1+n2-2)) %281.2413
%=================
t = (xbar1 - xbar2)/(sp * sqrt(1/n1 + 1/n2)) %1.9406

%(a) H0: mu1 = mu2 vs H1: mu1 ~= mu2 (two-sided alternative)
%RejRegion
tinv(1-0.05/2, n1 + n2 -2) %2.0555, 1.9406 is not in RR=[2.0555, inf)

%H0 not rejected
%p-value
pval = 2 * tcdf(-abs(t), n1 + n2 - 2) %0.0632 > 0.05, H0 not rejected
%Note: If the alternative were onesided H1: mu1 > mu2, then
%pval = 1-tcdf(t, n1 + n2 - 2) = 0.0316 < 0.05, and one would reje ct H0

%(b)
[xbar1 - xbar2 - sp * sqrt(1/n1 + 1/n2) * tinv(1-0.05/2, n1 + n2 -2) ...

xbar1 - xbar2 + sp * sqrt(1/n1 + 1/n2) * tinv(1-0.05/2, n1 + n2 -2)]
% -12.3488 429.1821

10.10 Stress, Diet and Acids.

The WinBUGS solution is given below

model{
for (i in 1:n){

plasma[i] ~ dnorm(mu[smo[i]], prec[smo[i]] )
}

for ( j in 1:2) {
mu[j] ~ dnorm(0, 0.0001)
prec[j] ~ dgamma(0.0001, 0.0001)
}
difmu <- mu[1] - mu[2]
testmu <- step( mu[1] - mu[2] ) #1 if mu[1]>mu[2]
r <- prec[2]/prec[1] #var1/var2

}
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DATA
list(n=32, plasma = c(0.97, 0.72, 1.00, 0.81, 0.62, 1.32, 1. 24, 0.99,

0.90,0.74, 0.88, 0.94, 1.06, 0.86, 0.85, 0.58, 0.57,
0.64,0.98,1.09, 0.92, 0.78, 1.24, 1.18, 0.48, 0.71,
0.98, 0.68, 1.18, 1.36, 0.78, 1.64),

smo=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,1,2,2,2,2,2,2,2,2))

INITS
list( mu = c(0,0), prec=c(1,1) )

mean sd MC error val2.5pc median val97.5pc start sample
difmu -0.06288 0.1703 5.17E-4 -0.4106 -0.06287 0.2773 1001 100000

r 0.3162 0.2047 7.466E-4 0.06502 0.2699 0.8396 1001 100000
testmu 0.3393 0.4735 0.001388 0.0 0.0 1.0 1001 100000
Notice that testmu will be posterior proportion of how many times mu1

- mu2 is positive. Thus, the MCMC estimate of posterior probabili ty of hy-
pothesis H 1 that states ¹ 1 Ç ¹ 2 is 1 - 0.3393 = 0.6607. Note that the ratio if
variances has a 95% credible set fully below 1. This is a Bayes ian two-sided
test for equality of variances and the conclusion is that the variances are not
equal.

For comparison, a MATLAB session conducting a classical t test is provided

nonsmo = [0.97 0.72 1.00 0.81 0.62 1.32 1.24 0.99 ...
0.90 0.74 0.88 0.94 1.06 0.86 0.85 0.58 0.57...
0.64 0.98 1.09 0.92 0.78 1.14 1.18];

smo = [ 0.48 0.81 0.98 0.68 1.18 1.36 0.78 1.64];
%test hypothesis that the plasma ascorbic acid level for
%nonsmokers is smaller than that of smokers. Use alpha=0.05 .

X1bar = mean(nonsmo); s1 = std(nonsmo); n1 = length(nonsmo) ;
X2bar = mean(smo); s2 = std(smo); n2= length(smo);
%s1 = 0.2104, s2 = 0.3915; we check for equality of variances
F = s1^2/s2^2 %0.28888 is smaller than 1
pval1 = 2 * fcdf(F, n1-1, n2 -1)

% pval1 =0.0223 < 5% and we will not assume equality
% of variances in comparing the two means.
% The Welch-Satterwhite df for the t test is:

ndf = (s1^2/n1 + s2^2/n2 )^2 /( (s1^2 /n1)^2/(n1-1) + ...
(s2^2/n2)^2 /(n2-1) )

t = (X1bar - X2bar)/sqrt( s1^2/n1 + s2^2/n2 )
pval = tcdf(t,ndf)

% ndf = 8.3892; t =-0.4457; pval = 0.3336
% the mean mu1 is not significantly smaller
% than the mean mu2 at the significance level 5%

10.11 A. pantherina and A. rubescens.
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(a) s2
p Æ(s2

1(m ¡ 1)Å s2
2(n ¡ 1))/(m Å n ¡ 2) Æ(2.122 ¤ 11Å 1.942 ¤ 14)/(11Å 14) Æ

4.0852 is pooled sample variance, and sp Æ2.0212 is pooled sample standard
deviation.

Also,
p

1/12Å 1/15 Æ0.3873.

The test statistic t Æ X̄1¡ X̄2

sp
p

1/nÅ1/m
Æ ¡1.2/2.02/0.3873 Æ ¡1.5338. In the two

sided test, the critical value at ® Æ0.05 is t mÅn¡ 2,1¡ ®/2 Æt25,0.975 Æ2.060, and
the hypothesis H 0 is not rejected, since j t j Ç 2.060.

(b) z0.90 Æ1.2816 and z0.975 Æ1.96 and the group sample size should be
2/0.52 ¢(1.96Å1.2816)2 Æ84.0638 · 85. To achieve desired power and detect the
deviation of d Æ0.5, independent samples of m Æ85 and n Æ85 spores of A.
pantherina (“Panther") and A. rubescens (“Blusher") should be taken.

10.12 Blood Volume in Infants.

%Blood Volume in Infants
%X1 = early clamping measurements
X1 =[13.8 8.0 8.4 8.8 9.6 9.8 8.2 8.0 ...

10.3 8.5 11.5 8.2 8.9 9.4 10.3 12.6];
%X2 = late clamping measurements
X2=[10.4 13.1 11.4 9.0 11.9 16.2 14.0 8.2 ...

13.0 8.8 14.9 12.2 11.2 13.9 13.4 11.9];

X1bar = mean(X1) %9.6438
X2bar = mean(X2) %12.0938
s1 = std(X1) %1.7146
s2 = std(X2) %2.2359
n1 = 16; n2 = 16;
sp = sqrt( ((n1-1) * s1^2 + (n2-1) * s2^2 )/(n1 + n2 - 2) ) %1.9924
t = (X1bar - X2bar)/(sp * sqrt(1/n1 + 1/n2)) %-3.4781

p = 2 * tcdf(-abs(t), n1 + n2 - 2) %0.0016

The mean volumes of blood in infants are signi�cantly differ ent for early
(population 1) and late (population 2) clamping of the umbil ical cord.

10.13 Biofeedback.

(a) H 0 : ¹ 1 Æ¹ 2 versus H 1 : ¹ 1 È ¹ 2 or in terms of differences, H 0 : ¹ 1 ¡ ¹ 2 Æ0
versus H 1 : ¹ 1 ¡ ¹ 2 È 0.

(b) To follow the alternative H 1 the differences d1 should be taken as
X1i ¡ X2i Here, d i Æ{7,21,17,¡ 3,11}, d̄ Æ10.6, sd Æ9.32, t Æ10.6/(9.32/

p
5) Æ

2.54, t4,0.95 Æ2.131847.
(c) Variances are the same, normal distributions.

10.14 Hypertension.
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(a)

% first group
n1 = 15; X1bar = 16.16; s1 = 4.29;

% second group
n2 = 16; X2bar = 10.53; s2 = 3.33;

% population variances assumed the same, need s _p
sp2 = ((n1 -1) * s1^2 + (n2-1) * s2^2)/(n1 + n2 - 2);
sp = sqrt(sp2) % sp = 3.8237

tstat = (X2bar - X1bar)/(sp * sqrt(1/n1 + 1/n2))
% tstat = -4.0969

%TEST two sided H _1 rejection region method
alpha = 0.05;
tcrit = tinv(1-alpha/2, n1 + n2 - 2)% tcrit = 2.0452

%and the rejection region RR is
%RR =(-inf, -tcrit)U(tcrit, inf)=
% (-inf, -2.0452)U(2.0452, inf).
%Reject H _0 since tstat falls in the RR.

%TEST using p-values
pval = 2 * tcdf(-abs(tstat), n1 + n2 - 2)

% pval = 3.0733e-004
% which is the same as 2 * tcdf(tstat, n1+n2-2)
% since tstat < 0.
% Reject H _0 since pval = 0.0003 < 0.05 = alpha.

(b) The power is

©

0

B
@¡ z1¡ ®/2 Å

¢
q

¾2
1/n1 Å ¾2

2/n2

1

C
A,

with ¢ Æ3,® Æ0.05, and ¾2
1,¾2

2 replaced by s2
1 Æ4.292 and s2

2 Æ3.332.

Delta = 3;
pow = normcdf( -norminv(1 - alpha/2) + ...

Delta/( sqrt(s1^2/n1 + s2^2/n2) ) )
% pow = 0.5813

(c) The sample size is

n Æ
(¾2

1 Å ¾2
2)(z1¡ ®/2 Å z1¡ ¯ )2

¢ 2
,

with ¢ Æ3,® Æ0.05, ¯ Æ0.01 and ¾2
1,¾2

2 replaced by s2
1 Æ4.292 and s2

2 Æ3.332.

beta = 0.01;
n = (s1^2 + s2^2) * (norminv(1-alpha/2) + ...

norminv(1-beta))^2 /Delta^2
% n = 60.2066, thus, take n1=n2=61.
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10.15 Hemopexin in DMD Cases II.
TBA

10.16 Risk of Stroke.
TBA

10.17 Cell Counts.

%Exercise Cell Counts
A20 =[34 44 40 62 53 51 30 33 38 51 26 48];
M20 =[30 43 34 53 49 39 37 42 30 50 35 54];
A70 =[72 82 100 94 83 94 73 87 107 102];
M70 =[76 51 92 77 74 81 72 87 100 104];
n1 = length(A20); n2 = length(A70);
md20 = mean(A20-M20)
sd20=std(A20-M20)
md70 = mean(A70-M70)
sd70=std(A70-M70)

%(a)
t1 = md20/(sd20/sqrt(n1)) %0.5520
t2 = md70/(sd70/sqrt(n2)) %2.4072
pval1=2 * tcdf(-abs(t1), n1-1) %0.5920
pval2=2 * tcdf(-abs(t2), n2-1) %0.0394

%(b)
[md20 - tinv(0.975, n1-1) * sd20/sqrt(n1) ...

md20 + tinv(0.975, n1-1) * sd20/sqrt(n1)]
%-3.4853 5.8186

[md70 - tinv(0.975, n2-1) * sd70/sqrt(n2) ...
md70 + tinv(0.975, n2-1) * sd70/sqrt(n2)]
%%0.4821 15.5179

%(c)
var2p = ((n1-1) * sd20^2 + (n2-1) * sd70^2)/(n1 + n2 -2)
t0 = (md20 - md70)/sqrt(var2p * (1/n1 + 1/n2))
pval= 2 * tcdf(-abs(t0), n1 + n2 -2 )
% -1.7935 pval = 0.0880 not significant

Thanks to Professor Carlos E. Fernández-Ossa from School of Engineering
of Antioquia, Columbia, for pointing out typos in the origin al MATLAB code
for (b) and (c), leading to wrong results.

10.18 Impulses from Cray�sh.
TBA
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10.19 Aerobic Capacity.

x1bar = 46.3; x2bar = 38.0; s1 = 5; s2 = 5.2; n1 = 20; n2 = 10; sp = sq rt( ((n1
-1 )*s12 + (n2-1)*s22 )/(n1 + n2 - 2)) t = (x1bar - x2bar)/(sp * s qrt(1/n1 + 1/n2))

tinv(0.95, n1 + n2 - 2) pval = 1 - tcdf(t, n1 + n2 - 2)
sigma = 5; alpha = 0.05; beta = 0.1; delta = 4;
n = 2 * sigma2/delta2 * (norminv(1-alpha) + norminv(1-beta) )2

10.20 Cataract and Diabetes.

[rd rdl rdu rr rrl rru or orl oru] = risk(56, 84, 552, 1927)

% rd = 0.1773 [ 0.0945, 0.2601]
% rr =1.7964 [1.4477, 2.2290]
% or =2.3273 [1.6382, 3.3063]

10.21 Beginnings of Antiseptic Surgeries.
TBA

10.22 Reaction Times.

%%
rg = [...
18 22;...
16 20;...
23 29;...
30 35;...
32 27;...
30 29;...
31 33;...
25 29;...
27 31;...
21 24];

d = rg(:,1) - rg(:,2);
sd = std(d);
n = length(d);
t = mean(d)/( sd/sqrt(n))
p = 2 * tcdf( - abs(t), n-1)

tcrit = tinv(0.975, n-1)
%(-inf, -tcrit) U (tcrtit, inf)
% t = -2.5122
% p =0.0332
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% tcrit =2.2622

10.23 Gamma Globulin and Aspirin.
TBA

10.24 High/Low Protein Diet in Rats.

% High/Low Protein in Rats
X1=[134 146 104 119 124 161 107 83 113 129 97 123];
X2=[70 118 101 85 107 132 94];
X1bar = mean(X1); %X1bar = 120
s1 = std(X1); %s1=21.3882
n1 = length(X1); %n1 = 12
X2bar = mean(X2); %X2bar = 101
s2 = std(X2); %s2 = 20.6236
n2= length(X2); %n2=7
%=========================
F = s2^2/s1^2 %F = 0.9298
pval1 = 2 * fcdf(F, n2-1, n1 -1) %pval1 =0.9788
% decide sigma _1^2 = sigma _2^2 test by
% pooled standard deviation
sp = sqrt( ( (n1-1) * s1^2 + (n2-1) * s2^2)/(n1 + n2 - 2) )
%sp =21.1215
t = (X1bar - X2bar)/(sp * sqrt(1/n1 + 1/n2)) %t=1.8914
%
pval = 1-tcdf(t, n1 + n2 -2) %pval=0.0379
%
tcrit = tinv(0.95, n1 + n2 - 2) %tcrit=1.7396
n = (450 + 450) * (norminv(0.95) + norminv(0.95))^2 / 20^2
%n =24.3499
ssize = ceil(n) %ssize=25

10.25 Spider Monkey DNA.
TBA

10.26 PBSC versus BM for Unrelated Donor Allogeneic Transpl ants.
TBA

10.27 Hydrogels.

% Hydrogels
data =[...
20250 44250;...
51000 126000;...
77250 100500;...
39000 58500;...



82 10 Two Samples

40500 69750;...
42750 76500;...
78750 155250;...
42750 67500];

minutes30 = data(1:4,1)./data(1:4,2)
minutes60 = data(5:8,1)./data(5:8,2)

%minutes30 = 0.4576 0.4048 0.7687 0.6667
%minutes60 = 0.5806 0.5588 0.5072 0.6333

n1 = 4; n2 = 4;
xbar1 = mean(minutes30) %0.5744
xbar2 = mean(minutes60) %0.5700
alpha = 0.05;
s1 = std(minutes30) %0.1719
s2 = std(minutes60) %0.0522

sp = sqrt( ((n1-1) * s1^2 + (n2-1) * s2^2)/(n1 + n2 - 2)) %0.1270
[xbar1-xbar2 - tinv(1-alpha, n1+n2-2) * sp * sqrt(1/n1+1/n2),...
xbar1-xbar2 + tinv(1-alpha, n1+n2-2) * sp * sqrt(1/n1+1/n2)]
% -0.1702 0.1790

Since Westlake's interval [ ¡ 0.1702,0.1790] is not contained in the interval
[¡ 0.1,0.1] the hypothesis of equivalence cannot be established. It i s interest-
ing that H 0 : ¹ 1 Æ¹ 2 is not rejected ( p-value against one sided alternative
is 0.48), yet the equivalence cannot be established with spe ci�ed equivalence
margins and signi�cance level ®. The sample sizes n1 Æn2 Æ4 are quite small
to establish equivalence with the equivalence margins µU Æ ¡µL Æ0.1 If the
equivalence margins were µU Æ ¡µL Æ0.2, the equivalence would be estab-
lished.

10.1 Additional Problems

10.a1 Tactile Sensation in Rats. Researchers in Garrett Stanley's Lab
are interested in understanding how the brain processes the sense of touch,
and use the rat whisker system as a model for tactile sensatio n. In this par-
ticular experiment, the researchers were testing the abili ty of subject rats to
detect very weak de�ections of their whiskers resulting fro m a short (150ms)
puff of air. Much as a person might remain very still when tryi ng to listen for
a faint sound, it was hypothesized that the animals would be m ore likely to
succeed in the task when they held their whiskers still in ant icipation of the
arrival of the stimulus. To test this, the researchers recor ded high speed video
of the whiskers for a short interval prior to the stimulus. Af ter recording a
total of 57 trials, the researchers examined the video and se parated the trials
into two categories: those in which the whiskers were still p rior to the ar-
rival of the stimulus ( n1 Æ43), and those on which the whiskers were moving
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(n2 Æ14). The animals correctly detected the stimulus 23 times un der the �rst
condition ( p̂1 Æ53.49% correct), and only 3 times under the second condition
( p̂2 Æ21.43%).

(a) Test hypothesis for equality of proportions using norma l approximation
to the binomial. Argue that the sample size is small for the ce ntral limit the-
orem to hold ( Hint: For applicability of normal approximation usual require-
ment is min {n1,n2}p(1 ¡ p) È 5 for p Æ(n1 p̂1 Å n2 p̂2)/(n1 Å n2).) (b) Using Win-
BUGS, test the hypothesis in (a) using beta B e(1/2,1/2) prior on the unknown
proportions p1 and p2. Note that the choice (1/2 ,1/2) for the hyperparameters
of Beta is Jeffreys noninformative prior.

model{
X1 ~ dbin( p1, n1 )
X2 ~ dbin( p2, n2 )
p1 ~ dbeta(0.5, 0.5)
p2 ~ dbeta(0.5, 0.5)
diff <- p1 - p2
pH1 <- step(diff)
}

DATA

list( X1 = 23, X2 = 3, n1 = 43, n2 = 14)

INITS

list(p1=0.5, p2 = 0.5)

mean sd MC error val2.5pc median val97.5pc start sample
diff 0.301 0.1293 4.182E-4 0.02776 0.3087 0.5317 1001 100000
pH1 0.9836 0.127 4.333E-4 1.0 1.0 1.0 1001 100000

10.a2 Clinical Trial of Abatacept. Abatacept is a drug proposed to treat
and prevent active lupus �ares in at least one of three organ s ystems: the
skin, the heart, the lung, or four joints. If, in a double blin d trial 33 out of 115
people treated with Abatacept showed cumulative damage due to Systemic
Lupus Erythematosus (SLE Score ¸ 1), and 17 out of 55 people in the placebo
arm also showed cumulative damage due to SLE, is Abatacept mo re effective
than the placebo? Use a signi�cance level of 0 .05.

(a) Answer the above question using risk differences. What i s the 99% CI
for the risk difference?

(b) Answer the above question using the odds ratio. What is th e 95% CI for
the odds ratio?





Chapter 11

ANOVA and Elements of Statistical Design

11. 1 Nematodes.

TBA

11.2 Cell Folate Levels in Cardiac Bypass Surgery.

TBA

11.3 Computer Games.

TBA

11.4 MTHFR C677T Genotype and Levels of Homocysteine and Fol ate.

TBA

11.5 Beetles.

TBA

11.6 ANOVA Table from Summary Statistics.

TBA

11.7 Protein Content in Milk for Three Diets.

(a)

'Source' 'SS' 'df' 'MS' 'F' 'Prob>F'
'Groups' [0.7470] [ 2] [0.3735] [5.6118] [0.0053]
'Error' [5.0585] [76] [0.0666]
'Total' [5.8056] [78]

(b) The hypothesis here is that the diets don not differ in pro tein yield, that
is

H 0 : ¹ 1 Æ¹ 2 Æ¹ 2 vs.H 1 : not H 0.

H 0 is rejected since the p-value is less than 5%.

85
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(c) ¹ 1 ¡ ¹ 2 2 (¡ 0.0579,0.2844) ) ¹ 1 Æ¹ 2.
¹ 1 ¡ ¹ 3 2 (0.0684,0.4107) ) ¹ 1 È ¹ 3.
¹ 2 ¡ ¹ 3 2 (¡ 0.0416,0.2941) ) ¹ 2 Æ¹ 3.

11.8 Tasmanian Clouds.

TBA

11.9 Clover Varieties.

TBA

11.10 Cochlear Implants.

TBA

11.11 Bees.

TBA

11.12 SiRstv: NIST's Silicon Resistivity Data.

TBA

11.13 Dorsal Spines of Gasterosteus aculeatus.

%BENKA GARDENBAY BIG
stickleback =[...
4.2 4.4 4.9; 4.1 4.6 4.6; 4.2 4.5 4.3; 4.3 4.2 4.9; ...
4.5 4.4 4.7; 4.4 4.2 4.4; 4.5 4.5 4.5; 4.3 4.7 4.4 ];
lakes = [1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3];
[p table stats] = anova1(stickleback(:), lakes(:))

% p = 0.0267
%
% table =
%
% 'Source' 'SS' 'df' 'MS' 'F' 'Prob>F'
% 'Groups' [0.3033] [ 2] [0.1517] [4.3260] [0.0267]
% 'Error' [0.7363] [21] [0.0351] [] []
% 'Total' [1.0396] [23] [] [] []
%
% stats =
% gnames: 3x1 cell
% n: [8 8 8]
% source: 'anova1'
% means: [4.3125 4.4375 4.5875]
% df: 21
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% s: 0.1872

(a) Hypothesis H 0 stating that the mean lengths of dorsal spines are the
same for the three lakes is rejected at the level ® Æ0.05 since the p-value is
0.0267.

(b) If the signi�cance level was ® Æ0.01 the hypothesis H 0 would not be
rejected.

11.14 Incomplete ANOVA Table.

TBA

11.15 Maternal Behavior in Rats.

TBA

11.16 Comparing Dialysis Treatments.

%Comparing Dialysis Treatments.

wchange = [...
2.90 2.97 2.67; 2.56 2.45 2.62;...
2.88 2.76 1.84; 1.73 1.20 1.33;...
2.50 2.16 1.27; 3.18 2.89 2.39;...
2.83 2.87 2.39; 1.92 2.01 1.66];
subject = [1 2 3 4 5 6 7 8 ...
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8]';
treatment = [1 1 1 1 1 1 1 1 ...
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3]';

%(a) incorrect design // independent treatments

[p1 table1 stats1] = anova1(wchange(:), treatment)
% H0 not rejected!

% p1 = 0.1616

%

% table1 =

% 'Source' 'SS' 'df' 'MS' 'F' 'Prob>F'

% 'Groups' [1.2510] [ 2] [0.6255] [1.9901] [0.1616]

% 'Error' [6.6004] [21] [0.3143] [] []

% 'Total' [7.8515] [23] [] [] []

%

% stats1 =

% gnames: 3x1 cell

% n: [8 8 8]

% source: 'anova1'

% means: [2.5625 2.4137 2.0213]

% df: 21
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% s: 0.5606

% (b) correct solution block design

names = 'subject','treatment';
[p2 table2 stats2] = anovan(wchange(:),subject, treatmen t,...

'varnames',names)

% H0 rejected, the treatments differ.

% p2 =

% 0.0001

% 0.0028

%

% table2 =

% 'Source' 'Sum Sq.' 'd.f.' 'Mean Sq.' 'F' 'Prob>F'

% 'subject' [ 5.6531] [ 7] [0.8076] [11.9341] [6.0748e-005]

% 'treatment' [ 1.2510] [ 2] [0.6255] [ 9.2436] [ 0.0028]

% 'Error' [ 0.9474] [14] [0.0677] [] []

% 'Total' [ 7.8515] [23] [] [] []

11.17 Material Scientist and Assessing Tensile Strength.

tensile = [ 73 68 74 71 67 ...
73 67 75 72 70 ...
75 68 78 73 68 ...
73 71 75 75 69 ];

chemical = [1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4];
bolt = [1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5];

[P,T,STATS,TERMS] = anovan( tensile, {chemical, bolt}, 'm odel','linear', ...
'varnames', strvcat('chemical', 'bolt'))

11.18 Oscilloscope.

TBA

11.19 Magnesium Ammonium Phosphate and Chrysanthemums.

% Response: Height of Chrysanthemum

hchr = [...
13.2 16.0 7.8 21.0;12.4 12.6 14.4 14.8;...
12.8 14.8 20.0 19.1;17.2 13.0 15.8 15.8;...
13.0 14.0 17.0 18.0;14.0 23.6 27.0 26.0;...
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14.2 14.0 19.6 21.1;21.6 17.0 18.0 22.0;...
15.0 22.2 20.2 25.0;20.0 24.4 23.2 18.2];

%50 gm/bu 100 gm/bu 200 gm/bu 400 gm/bu

treatment = [...
1 2 3 4; 1 2 3 4; 1 2 3 4; 1 2 3 4; 1 2 3 4;...
1 2 3 4; 1 2 3 4; 1 2 3 4; 1 2 3 4; 1 2 3 4];

[pval anovatab stats] = anova1(hchr(:), treatment(:))

% pval = 0.0989

% anovatab =

% 'Source' 'SS' 'df' 'MS' 'F' 'Prob>F'

% 'Groups' [119.7870] [ 3] [39.9290] [2.2522] [0.0989]

% 'Error' [638.2480] [36] [17.7291] [] []

% 'Total' [758.0350] [39] [] [] []

% stats =

% gnames: {4x1 cell}

% n: [10 10 10 10]

% source: 'anova1'

% means: [15.3400 17.1600 18.3000 20.1000]

% df: 36

% s: 4.2106

multcompare(stats, 'alpha',0.1,'display','off')

% 1.0000 2.0000 -6.2949 -1.8200 2.6549

% 1.0000 3.0000 -7.4349 -2.9600 1.5149

% 1.0000 4.0000 -9.2349 -4.7600 -0.2851

% 2.0000 3.0000 -5.6149 -1.1400 3.3349

% 2.0000 4.0000 -7.4149 -2.9400 1.5349

% 3.0000 4.0000 -6.2749 -1.8000 2.6749

m = stats.means
c = [1 -1 -1 1]; %mu1 + mu4 = mu2 + mu3

L = c(1) * m(1) + c(2) * m(2)+c(3) * m(3) + c(4) * m(4) %L=-0.02

LL= m * c' %LL= -0.02

stdL = stats.s * sqrt(c(1)^2/4+c(2)^2/6+c(3)^2/6+c(4)^2/8)
%stdL = 3.5437

t = LL/stdL %t = -0.0056

%test H _o: mu * c' = 0 H _1: mu * c' ~= 0

% p-value

2 * tcdf(-abs(t), 36) %pval= 0.9955; 36=40-4
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%or 90% confidence interval for population contrast

[LL - tinv(0.95, 36) * stdL, LL + tinv(0.95, 36) * stdL]
%-6.0029 5.9629

11.20 Color Attraction for Oulema melanopus .

TBA

11.21 Raynaud's Phenomenon.

TBA

11.22 Simvastatin.

TBA

11.23 Antitobacco Media Campaigns.

TBA

11.24 Orthosis.

TBA

11.25 Bone Screws.

TBA

11.26 R&R Study.

TBA

11.27 Additive R&R ANOVA for Measuring Impedance.

TBA

11.1 Additional Problems

11.a1 Nulatron Tumb Screws. A manufacturer of �ow chambers uses Ny-
lon 6 (Nulatron) for production of tumb screws. The manufact urer orders Ny-
latron from two suppliers. The material is tested for shear s trength (in PSI at
73±F ). Four batches from each supplier are selected at random and three sam-
ples from each batch used for testing. The shear strength var ies from batch to
batch.

(a) You are interested in testing for the difference between the two suppli-
ers, but want to account for the differences between batches . Do your testing
at ® Æ0.05 signi�cance level.

(b) Compare the suppliers by ignoring batches, using the two -sample t-test.
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Supplier 1 2
Batch 1 2 3 4 1 2 3 4

9620 9590 9715 9690 9700 9710 9670 9695
9670 9610 9675 9665 9680 9745 9720 9680
9675 9685 9645 9710 9675 9665 9680 9730

(a) Here the suppliers are �xed effects but batches are rando m. The hy-
pothesis H 0 : ®i Æ0 is tested by F ÆMSA /MSB (A) which under H 0 has F
distribution with 2 ¡ 1 and 2(4 ¡ 1) degrees of freedom. MSA Æ6666.7,FA Æ
5.4545, pa Æ0.0582. Thus H 0 not rejected.

The hypothesis of homogeneity of batches H 0 : ¯ j (i ) Æ0 is tested by F Æ
MSB (A)/MSE which under H 0 has F distribution with 2(4 ¡ 1) and 2 ¢3(4 ¡ 1)
degrees of freedom. MSA (B) Æ1222.2,FB(A) Æ1.1757, pb(a) Æ0.3670,MSE Æ
1039.6. Thus, H 0 not rejected.

(b) Two-sample t statistic (pooled standard deviations) is t Æ ¡2.4738, which
leads to a two-sided p value of 0.0216, suggesting that the suppliers are sig-
ni�cantly different.

11.a2 Chair Yoga. The chair yoga pose (Utkatasana, Fig. 11.1) is known
for improving posture and balance because of the way how it di stributes the
body weight over the foot (it also helps in strengthening the muscles). A group
of students conducted a study with n Æ19 subjects to determine whether the
depth (angle between the calves and thigh) of the yoga chair p ose affects the
uniformity of force distributions. Subjects were requeste d to stand on the bal-
ance board with a speci�c posture, they were then asked to ass ume the yoga
chair pose until they reached 60, then 90, then 120, then 150 d egrees for 10
seconds each. The balance board recorded 4 forces, right bot tom, left bottom,
right top, and left top, from which only their coef�cient of v ariation, cvforce ,
is of interest in this problem. The data structure chairyoga.mat contains
�elds subject, angle, and cvforce , each as a vector 654 £ 1. The original
high-frequency data were subsampled to decrease time-depe ndence of force
measurements.

The smaller the coef�cient of variation of the four forces cvforce is, the
better/safer the pose.

(a) Test whether the population means for cvforce are the same for the
four levels of angle , that is, test the hypothesis H 0 : ¹ 60 Æ¹ 90 Æ¹ 120 Æ¹ 150.
Use a block design where angle is the factor of interest and subject is a
blocking variable. Copy the ANOVA-table from the output.

Hint. Use an additive anovan with angles and subjects as the factors.
(b) If the hypothesis of equality of means from (a) is rejecte d, which means

differ. Which mean is the smallest (“safest” in the sense of m inimum relative
variability).
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Fig. 11.1 The 90± chair yoga pose (Utkatasana).

(c) The procedure multcompare will give you simultaneous con�dence in-
tervals for all differences between the means. What is the 95 % CI for ¹ 90¡ ¹ 120.
Are the two means signi�cantly different and why yes or not?

(d) Run multcompare for the subjects. Which subject (out of 19) was the
most disbalanced (had maximum CV)? Which subject was the mos t stable?

%Chair Yoga

load 'chairyoga.mat'
figure(1)
cvforce = chairyoga.cvforce;
angle = chairyoga.angle;
subject = chairyoga.subject;
varnames ='angle','subject';
[p,table,stats] = anovan(cvforce,angle,subject, ...

'model','linear','varnames',varnames);

% table =

% 'Source' 'Sum Sq.' 'd.f.' 'Singular?' 'Mean Sq.' 'F' 'Prob >F'

% 'angle' [ 0.1489] [ 3] [ 0] [ 0.0496] [3.5386] [0.0145]

% 'subject' [19.2803] [ 18] [ 0] [ 1.0711] [76.3601] [0]

% 'Error' [ 8.8653] [ 632] [ 0] [ 0.0140]

% 'Total' [28.3819] [ 653] [ 0] []

figure(2)
multcompare(stats,'dimension',1)

% 1.0000 2.0000 -0.0456 -0.0119 0.0218

% 1.0000 3.0000 -0.0053 0.0288 0.0630

% 1.0000 4.0000 -0.0151 0.0187 0.0525

% 2.0000 3.0000 [0.0050 0.0408 0.0765] <-- Interval

% 2.0000 4.0000 -0.0047 0.0307 0.0660
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% 3.0000 4.0000 -0.0459 -0.0101 0.0257

figure(3)
multcompare(stats,'dimension',2) ;





Chapter 12

Distribution Free Tests

Friday the 13th.

fri6 = [9 6 11 11 3 5];
fri13 =[13 12 14 10 4 12];
[pvae, pvaa, n, plusses, ties] =signtst(fri6, fri13)

%pvae = 0.1094
%pvaa = 0.1103
%n = 6
%plusses = 1
%ties = 0

The output [pvae, pvaa, n, plusses, ties] consists of the exact one-
sided p-value (pvae ), normal approximation to one sided p-value (pvaa ), sam-
ple size n adjusted for the ties (depending on policy of tie-treatment ), number
of plusses (or minuses, whatever is more extreme for H 0), and number of
ties.

The exact p-value is
³ ¡6

0

¢
Å

¡6
0

¢́ 1
26 Æ7/64 Æ0.1094. H 0 is not rejected at level

® Æ0.10.
The built-in MATLAB function signtest provides an alternative way to

solve this problem, but is somewhat lean in reporting and opt ions, compared
to signtst .

Reaction Times.

TBA

Simulation.

TBA

12.4 Grippers.

95
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(a)
%Left hand (X)

X = [ 140 90 125 130 95 121 85 97 131 110]
%Right hand (Y)

Y = [ 138 87 110 132 96 120 86 90 129 100]
[W, Zstat, pval] = wsirt(X, Y, 1)

% W = 37 [Sum of ranks pos - sum of ranks negative, should be 0 und er H _0]
% Zstat = 1.8956
% pval = 0.0326
% (b)
d = X - Y %mean(d) = 3.6
n= length(X);
sd = std(d) %5.4610
tstat = mean(d)/(sd/sqrt(n)) %2.0846
pval = 1-tcdf(tstat, n-1) %0.0334 No opinion change.

Iodide and Serum Concentration of Thyroxine.

TBA

Weightlifters.

TBA

Cartilage Thickness in Two Osteoarthritis Models.

TBA

A Claim.

TBA

Claustrophobia.

% Claustophobia
A =[...
4.6 4.7 4.9 5.1 7.0 4.9 5.1 5.2 5.5 4.8 ...
5.7 5.0 5.8 6.1 6.5 7.0 6.4 5.2 4.6 4.7 ...
4.9 6.4 5.9 4.7 5.8 5.2 5.4 6.1 7.7 6.2 ...
5.8 5.1 6.5 2.2 6.9 5.0 6.5 7.2 8.2 6.7];

B =[...
5.2 5.3 5.4 7.7 8.1 4.9 5.6 6.2 6.3 7.0 ...
7.0 7.8 6.8 7.7 8.0 6.6 5.5 8.2 8.1 5.0];

[sumranks1, tstat, pval] = wmw(A, B, -1)
% also [sumranks1, tstat, pval] = wsurt(A, B, -1)

% sumranks1 = 1041
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% tstat = -2.8094
% pval = 0.0025
%
% H0 rejected, scores for A lower than for B

Nonparametric Stats with Raynaud's Phenomenon.

TBA

Cotinine and Nicotine Oxide.

TBA

Coagulation Times.

TBA

Blocking by Rats.

TBA





Chapter 13

Goodness of Fit Tests

13.1 Q-Q Plot for
p

2Â2.

TBA

13.2 Not at all like me.

Results: Â2 Æ2.55, Â2
4,1¡ 0.05 Æ9.4877, Do not reject H 0.

%Not at All Like Me
ni=[8 9 21 8 4];
n= sum(ni)
%n = 50
theopi = [10 20 40 20 10]/100
%theopi = 0.1000 0.2000 0.4000 0.2000 0.1000

npi=50 * theopi
%npi = 5 10 20 10 5

ch2 = sum((ni - npi).^2 ./npi)
%ch2 = 2.5500

pval = 1 - chi2cdf(2.55, 5-1)
%pval = 0.6357

crit= chi2inv(1-0.05, 5-1)
%crit = 9.4877

13.3 Cell Counts.

Sequence{(n i ¡ np i )2/(np i )} : [2.2368 1.9059 0.1779 0.1779 0.5309]. Â2 Æ
5.0294 Â2

4,1¡ 0.05 Æ9.4877.

13.4 GSS Data.

99
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Â2 Æ25.0860, Â2
3,1¡ 0.05 Æ7.8147, np i : [309.4318 557.2213 28.685 3.6619].

13.5 Strokes on “Black Monday".

np1 Æ18.7778 0.44444 1 1.7778 1.7778 2.7778 1. Â2 Æ27.5556 Â2
6,1¡ 0.05 Æ

12.5916.

13.6 Benford's Law.

TBA

13.7 Simulational Exercise.

TBA

13.8 Deathbed Scenes.

TBA

13.9 Grouping in a Vervet Monkey Troop.

TBA

13.10 Crossing Mushrooms.

Total number of observations is n Æ224. Theoretical frequencies are np1 Æ
224¢ 9

16 Æ126, np2 Ænp3 Æ224¢ 3
16 Æ42, and np4 Æ224¢ 1

16 Æ14.

Â2 Æ
rX

iÆ1

(n i ¡ np i )2

np i
Æ

(¡ 6)2

126
Å

112

42
Å

(¡ 6)2

42
Å

12

14
Æ4.095.

Since Â2
4¡ 1,0.95 Æ7.81, the results do not disagree with the theory. In other

words, H 0 is not rejected at 5% signi�cance level.

3.11 Renner Honey Data Revisited.

TBA

13.12 PCB in Yolks of Pelican Eggs.

anacapa =[452 184 115 315 139 177 214 356 166 246 ...
177 289 175 296 205 324 260 188 208 109 204 ...

89 320 256 138 198 191 193 316 122 305 203 ...
396 250 230 214 46 256 204 150 218 261 143 ...
229 173 132 175 236 220 212 119 144 147 171 ...
216 232 216 164 185 216 199 236 237 206 87];

hist((anacapa), 20)
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prctile(anacapa, [10 20 30 40 50 60 70 80 90])

%122.0000 148.5000 175.0000 192.0000 205.0000 216.0000
% 232.0000 256.0000 315.0000

prcs = prctile(anacapa, [12.5 25 37.5 50 62.5 75 87.5 ])

%135.7500 169.7500 187.6250 205.0000 216.2500 239.2500 29 9.3750

%[-inf] 46 87 89 109 115 119 122 132 138 [138.5]
% 139 143 144 147 150 164 166 171 173 [174]
% 175 175 177 177 184 185 188 191 193 [195.5]
% 198 199 203 204 204 205 206 208 212 [213]
% 214 214 216 216 216 218 220 229 230 [231]
% 232 236 236 237 246 250 256 256 260 [260.5]
% 261 289 296 305 315 316 320 324 356
% 396 452 [inf]

ni = [9 9 9 9 9 9 11]
ei = 65 * diff(normcdf([-1000 138.5 174 195.5 213 231 260.5 2000], .. .

mean(anacapa), std(anacapa) ))

chi2 = sum( (ni - ei).^2 ./ ei )
1-chi2cdf(chi2, 7-1-2)
% ei = 10.6016 9.5833 7.1860 6.1970 6.3072 9.2636 15.8613
% chi2 = 4.6503
% pval = 0.3251
% p = 0.3251

[h,p,stats] = chi2gof(anacapa,'cdf',...
@(z)normcdf(z,mean(anacapa),std(anacapa)),...
'edges',[0 138.5 174 195.5 213 231 260.5 452 1000],'nparams ',2)

stats.E

% stats =
% chi2stat: 4.6503
% df: 4
% edges: [0 138.5000 174 195.5000 213 231 260.5000 1000]
% O: [9 9 9 9 9 9 11]
% E: [1x7 double]
%
% ans = 10.6016 9.5833 7.1860 6.1970 6.3072 9.2636 15.8613
[h,p,stats] = chi2gof(anacapa)

13.13 Number of Leaves per Whorl in Ceratophyllum demersum .

TBA

13.14 From 1998-2002 U.S. National Health Interview Survey (NHIS).
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(a) Probabilities for Binomial B in (2,0.515) distribution are: p0 Æ
¡2
0

¢
0.5150(1¡

0.515)2 Æ0.2352, p1 Æ
¡2
1

¢
0.5151(1¡ 0.515)1 Æ0.4995, p2 Æ

¡2
1

¢
0.5152(1¡ 0.515)0 Æ

0.2652. Theoretically expected sibship counts, if the distributio n for number of
boys is B in (2,0.515), are 7541 ¢0.2352 Æ1773.6, 7541 ¢0.4995 Æ3766.7, and
7541¢0.2652 Æ1999.9. Thus,

Number of Boys 0 1 2
Observed number of sibships 1,941 3,393 2,207
Theoretical number of sibships 1,773.6 3,766.7 1,999.9
Difference 167.4 -373.7 207.1

We see that there is a difference between Observed and Theoretical numbers
of sibships, especially for the case of sibships with one boy where the differ-
ence is -373.7. [Later in the course we will learn to test if th is difference is
signi�cant]

(b) First note that n Æ50936, i.e., n is the total number of children. The
number of boys is 13079 Å 2£ 6545 Æ26169. Thus, p̂ Æ26169/50936.

The following MATLAB code calculates Z statistic and associated p value
for the one-sided alternative.

z = (26169/50936 - 1/2)/sqrt(0.5 * 0.5/50936)
%z = 6.2121
1-normcdf(6.2121)
%ans = 2.6141e-010

Since Z Æ6.2121 falls in the rejection region RR Æ[1.645,1 ), the hypothe-
sis H 0 : p Æ1/2 is rejected. The proportion of boys in this population is signi�-
cantly higher than 1/2.

Note that p-value is smaller than ® Æ0.05 leading to the same decision to
reject H 0.

13.15 Neuron Fires Revisited.

%neuronfires.mat
load neuronfires
[f] = hist(Y, 2.5:5:997.5)
[ni x]=hist(f,unique(f))
%ni = 6 18 21 45 39 25 25 11 6 3 1
%x = 1 2 3 4 5 6 7 8 9 10 12

ni=[ni(1:9) ni(10)+ni(11)] %join the last two cells

%ni = 6 18 21 45 39 25 25 11 6 4

npi= 200 * [poisscdf(1,mean(f))...
poisspdf(2:9,mean(f)) 1-poisscdf(9,mean(f))]

% note that the first probability includes 0 and 1.
%npi = 8.4644 17.4079 28.6940 35.4730 35.0828
% 28.9141 20.4257 12.6256 6.9371 5.9754
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ch2 = sum((ni-npi).^2./npi)
%ch2 = 8.3400

pval = 1-chi2cdf(ch2, 10-1-1) %estimated mean, -1 df
%pval = 0.4010

The counts in the consecutive intervals are consistent with the Poisson dis-
tribution ( ˆ̧ Æ4.945, p-value 0.4010).

13.16 Cloudiness in Greenwich.

TBA

13.17 Distance between Spiral Reversals in Cotton Fibers.

TBA





Chapter 14

Models for Tables

14.1 Amoebas and intestinal disease.

TBA

14.2 Drinking & Smoking.

TBA

14.3 Alcohol and Marriage.

Abstain 1 - 60 over 60 Rows
Single 67:49 213:246 74:59 354
Widowed 85:116 633:589 129:142 847
Divorced 27:14 60:71 15:17 102
Columns 179 906 218 1303

Â2 Æ6.6Å4.4Å3.8Å3.3Å1.2Å12.1Å1.7Å0.24 Æ41.64, d f Æ(3¡ 1)¢(3¡ 1) Æ4,
Critical value Â2

4,1¡ 0.05 Æ9.448, Decision: Dependent.

14.4 Family Sizes.

[chi2,pvalue,exp]=tablerxc([145 81 57 22 9 8; ...
151 73 71 33 13 10; 124 60 80 42 13 8])

%chi2 = 16.2783
%
%pvalue = 0.0919
%
%exp = 135.2400 68.9080 66.9760 31.2340 11.2700 8.3720
% 147.4200 75.1140 73.0080 34.0470 12.2850 9.1260
% 137.3400 69.9780 68.0160 31.7190 11.4450 8.5020

105



106 14 Models for Tables

14.5 Nightmares.

[chi2, pvalue, exp]=tablerxc([55 60; 105 132])
%exp = 52.2727 62.7273

% 107.7273 129.2727

%chi2 = 0.3875

%pvalue = 0.5336

14.6 Independence of Segregation.

TBA

14.7 Site of Corpus Luteum in Caesarean Births.

TBA

14.8 An Easy Grade?

expected prof A prof B prof C total

grades A 15 18 17 50
grades B 24 28.8 27.2 80
grades C 21 25.2 23.8 70

total 60 72 68 200

Â2 Æ24.037 exceeds critical value Â2
4,0.99 Æ13.277. Reject H 0.

14.9 Importance of Bystanders.

H 0: Assistance and the number of bystanders are independent.
MATLAB output

[chisq, p, expected]=tablerxc([11 2; 16 10; 4 9])

% chisq = 7.9078

% p = 0.0192

% expected =

% 7.7500 5.2500

% 15.5000 10.5000

% 7.7500 5.2500
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yields the p-value smaller than 2%. The statistic Â2 Æ7.9078 is signi�cant,
that is, H 0 is rejected.

14.10 Baseball in 2003.

TBA

14.11 Psychosis in Adopted Children.

Hint. For (a) and (b) use theory from Chapter (Two Samples, pa ge 111)
since the tables are not paired.

14.12 The Midtown Manhattan Study.

TBA

14.13 Tonsillectomy and Hodgkin's Disease.

We used m-�le unmatch.m

%or = 2.1429

%chi2 = 2.2273

%lor = 0.7621

%varlor = 0.2608

%stdlor = 0.5107

%cill = -0.2388

%cilu = 1.7631

%cil = 0.7876

%ciu = 5.8303

14.14 School Spirit at Duke.

TBA

14.15 Two Halloween Questions with Easy Answers.

TBA

14.16 Runners and Heart Attack.

(a) Â2 Æ2.639, critical value is Â1,0.95 Æ3.841, do not reject H 0. (b) The error
of second kind is to accept the hypothesis that running and he art attacks are
independent, when in fact, they are dependent.]

14.17 Perceptions of Dangers of Smoking.

TBA

14.18 Red Dye No 2.
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TBA

14.19 Cooper Hawks.

TBA

14.20 Hepatic Arterial Infusion.

TBA

14.21 Vaccine Ef�cacy Study.

TBA

14.1 Additional Problems

14.a1 Paired Odds Ratio. Show, by considering Mantel-Haenszel method-
ology (page 555), that the odds ratio for paired table [13;42 ] is equal to 3/4.

By parallelizing the paired table, there are one table [11;0 0], three
[10;01], four [01;10], and two [00;11] .

Since for multiple tables OR Æ
P

i a i d i /n iP
i b i ci /n i

(page 551), it follows
P

i a i d i /n i Æ
B /2,

P
i b i ci /n i ÆC/2, where [ AB ;CD ] is the original paired table.

14.a2 Chlordiazopoxide Use and Congenital Heart Defects. Medica-
tion chlordiazepoxide (Librium) is indicated for the relie f of acute agitation
and hyperactivity (e.g., alcoholism, anxiety, hysterical and panic states, drug
withdrawal) via its sedative, appetite-stimulating and we ak analgesic actions.
Rothman et al. (1979) explored the link between chlordiazop oxide use in early
pregnancy and incidence of congenital heart defects in babi es. The retrospec-
tive analysis is summarized in the following table:

Chlordiazopoxide Use
Yes No Total

Case Mothers 4 386 390
Control Mothers 4 1250 1254
Total 8 1636 1644

Let p1 and p2 be the probabilities of a birth with congenital heart defect for
exposed and control mothers, respectively.

(a) By using MATLAB and Fisher's exact test, test the hypothe sis H 0 : p1 Æ
p2 versus the one sided alternative H 1 : p1 È p2.

(b) Compare this test with the test for two proportions (norm al approxima-
tion Z , page 378).
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(a) The p-value is
P 8

kÆ4

¡8
k

¢¡ 1636
390¡ k

¢
/
¡1644

390

¢
= 1-hygecdf(3, 1644, 8, 390)=0.0964

> 5%.
Sometimes, the mid- p value is reported. The mid- p value is de�ned as

a tail probability where the observed value is taken with wei ght 1/2, 1/2 £¡8
4

¢¡1636
386

¢
/
¡1644

390

¢
Å

P 8
kÆ5

¡8
k

¢¡ 1636
390¡ k

¢
/
¡1644

390

¢
= 0.5 * hygepdf(4, 1644, 8, 390)

+ (1- hygecdf(4, 1644, 8, 390))=0.0590.
(b) The approximation is closer to mid- p value, and not very accurate given

the fact that there are only 8 births with congenital heart de fects. This could
be misleading since at 5% level, the nonsigni�cant �nding wo uld be declared
signi�cant.

p1=4/390; p2 = 4/1254; n1=390; n2=1254;
pbar= n1/(n1+n2) * p1 + n2/(n1+n2) * p2 %pbar = 0.0049
z = (p1 - p2)/sqrt( pbar * (1-pbar) * (1/n1+1/n2)) %1.7515
1-normcdf(1.7515) %0.0399 %p-value

Rothman, K. J., Fyler, D. C., Goldblatt, A., and Kreidberg, M . B. (1979).
Exogenous hormones and other drug exposures of children wit h congenital
heart disease. Am. J. Epidemiol. ,109, 433–439.





Chapter 15

Correlation

15.1 Correlation Between Uniforms and Their Squares.

a = 2 * rand(10000,1) - 1;
b = a.^2;
corr(a,b)

15.2 Muscle Strength of “Ehtanol Abusers”.

Hints: (a) Statistic t Ær HS

r
n¡ 2

1¡ r 2
HS

has Student t distribution with n ¡ 2

degrees of freedom. The alternative is one sided (upper tail critical), p-value is
1-tcdf(t, n-2).

(b) Recall, r HS .A Æ r HS ¡ r HA r SAq
(1¡ r 2

HA )(1¡ r 2
SA )

. Statistic t Ær HS .A

r
n¡ 1¡ 2

1¡ r 2
HS.A

has Student

t distribution with n ¡ 3 degrees of freedom.
(c) Find 95% CI for ! Æ1

2 log 1Å½HS
1¡ ½HS

which is population counterpart of w Æ
1
2 log 1År HS

1¡ r HS
. The latter has normal distribution,

w » N (! ,
1

n ¡ 3
),

which is useful to �nd CI for ! . Back transform lower and upper bounds of CI

for ! by r Æe2w ¡ 1
e2w Å1

.

15.3 Vending Machine and Pharmacy Errors.

TBA

15.4 Vending Machine and Pharmacy Errors Revisited.

111



112 15 Correlation

errors= [ 2, 3, 10, 9, 5, 7, 8, 4]';
coke =[112, 100, 220, 250, 100, 200, 160, 100]';
people = [10000, 6000, 17000, 20000, 9000, ...

15000, 14000, 8000]';
corr(errors, coke)
% 0.8785
corr(errors, people)
% 0.8821
corr(coke, people)
% 0.9735

(0.8785-0.8821 * 0.9735)/(sqrt(1-0.8821^2) * sqrt(1-0.9735^2))
% 0.1836

15.5 Corn Yields and Rainfall.

TBA

15.6 Drosophilæ.

Grand Canyon: w1 Æ0.5763 Flagstaff: w2 Æ0.8107
The test statistic for H 0 : ½1 Æ½2 is: z Æ0.5763¡ 0.8107p

1/36Å1/17
Æ ¡0.7965.

p-value against two sided hypothesis is 2 ©(¡ 0.7965) Æ0.4257. Conclusion:
Do not reject null hypothesis.

15.7 Con�dence Interval for the Difference of Two Correlati on Coef�-
cients.

TBA

Oxygen Intake.

TBA

15.9 Obesity and Pain.

(a) (4461.5 ¡ 10 ¤ 62.7 ¤ 7.7)/(
p

(45141 ¡ 10 ¤ 62.72) ¤
p

(799.5 ¡ 10 ¤ 7.72)) Æ
¡ 0.3339.

(b) t Æ
p

(n¡ 2)¤ r /
p

(1¡ r 2) Æ ¡1.0019. pvaluecd f t (¡ 1.0019,10¡ 2) Æ0.1729,
(c) (¡ 0.3339Å 0.2089¤ 0.8627)/

p
(1 ¡ 0.20892)/

p
(1 ¡ 0.86272) Æ ¡0.3107.

(d)

omint=[om-1.96/sqrt(10-3) om+1.96/sqrt(10-3)]
% omint = -1.0880 0.3936

(exp(2 * omint)-1)./(exp(2 * omint) + 1)
% ans = -0.7962 0.3745
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15.1 Additional Problems

15.a1 Correlation between X i and X . Let X1, X2, . . . , X n be independent
with common variance ¾2. Show that

Corr (X i , X ) Æ1/
p

n, 1 · i · n.

Without loss of generality assume that EX i Æ0. Then

Cov(X i , X ) ÆE(X i X ) ÆX 2
i /n Å

X

j6Æi
EX i X j /n ÆX 2

i /n Å EX i
X

j6Æi
EX j /n Æ¾2/n.

The correlation is

Corr (X i , X ) ÆCov(X i , X )/[V ar (X i ) V ar (X )]1/2 Æ
¾2/n

p
¾2 ¢¾2/n

Æ1/
p

n.





Chapter 16

Regression

16.1 Regression with Three Points.

TBA

16.2 Age and IVF Success Rate.

TBA

16.3 Sharp Dissection and Severity of Postoperative Adhesi ons.

lasd = [ 2.4849 3.2581 3.3322 3.5835 ...
3.6109 3.6889 3.8918 4.4188 ...
4.5433 4.5643 4.5951 4.5951 ...
4.6540 4.7875 4.8752 4.8978 ...
4.9053 5.0499 5.5255 5.8051 ...
6.0186 6.0210];

sesco = [6 7 7 7 9 9 8 14 13 10 10 ...
10 11 12 12 12 12 15 16 18 17 18];

x = lasd';
y = sesco';
n = length(x) %n=22
p = 2; %number of parameters (beta0, beta1)
% Sums of Squares
SXX = sum( (x - mean(x)).^2 ) %17.9017
SYY = sum( (y - mean(y)).^2 ) %279.5000
SXY = sum( (x - mean(x)). * (y - mean(y)) ) %65.8276

% estimators of coefficients beta1 and beta0
b1 = SXY/SXX %3.6772
b0 = mean(y) - b1 * mean(x) %-5.0651
% predictions
yhat = b0 + b1 * x;

115
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%residuals
res = y - yhat;
% ANOVA Identity
SST = sum( (y - mean(y)).^2 ) % 279.5000
SSR = sum( (yhat - mean(y)).^2 ) % 242.0592
SSE = sum( (y - yhat).^2 ) % 37.4408
% forming F, test of adequacy of linear regression
MSR = SSR/(p - 1) % 242.0592
MSE = SSE/(n - p) %should be sigma2hat, 1.8720
F = MSR/MSE %129.3023
pvalue = 1-fcdf(F, p-1, n-p)
%H_0: regression has beta1=0, no need for
% linear fit pval= 3.4983e-010
% Other measures of goodness of fit
R2 = SSR/SST %0.8660
R2adj = 1 - (n-1)/(n-p) * SSE/SST %0.8593
s = sqrt(MSE) % 1.3682
% Standard error of coefficient estimators
sb1 = s/sqrt(SXX) % 0.3234
sb0 = s * sqrt(1/n + (mean(y))^2/SXX ) %3.7303

% are the coefficients equal to 0?
t1 = b1/sb1 %11.3711
pb1 = 2 * (1-tcdf(abs(t1),n-p) ) % 3.4983e-010
t0 = b0/sb0 % -1.3578
pb1 = 2 * (1-tcdf(abs(t0),n-p) ) % 0.1896
% predicting y for the new observation x, CI and PI
newx = 4;
ypred = b0 + b1 * newx % 9.6436
sym = s * sqrt(1/n + (mean(x) - newx)^2/SXX )

%s for y mean 0.3343
syp = s * sqrt(1 + 1/n + (mean(x) - newx)^2/SXX )

%s for y prediction 1.4085

%intervals CI and PI
alpha = 0.05;
%mean response interval
lbym = ypred - tinv(1-alpha/2, n-p) * sym;
rbym = ypred + tinv(1-alpha/2, n-p) * sym;
% prediction interval
lbyp = ypred - tinv(1-alpha/2, n-p) * syp;
rbyp = ypred + tinv(1-alpha/2, n-p) * syp;
%print the intervals
[lbym rbym] % 8.9463 10.3409
[lbyp rbyp] % 6.7055 12.5816

16.4 Kanamycin Levels in Premature Babies.

TBA

16.5 Degradation of Scaffolds.
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% (a) [56.2193 - 6.6109 day], 0.6818.

% (b) t = -1.3713, pval = 0.0921

% (c)[-8.5882, -4.6336]

% (d) 19.8593, 11.1969

16.6 Glucosis in Lactococcus Lactis.

TBA

16.7 Weight and Latency in Rats. Data consisting of rat body weight
(grams) and latency to seizure (minutes)

p = 2; %number of parameters (beta0, beta1)
%"wei" measurement is "x", "latency" is "y".
x = wei ; %column vector
mean(x) % xbar = 411
y = latency ; %column vector
n = length(x);
% Sums of Squares
SXX = sum( (x - mean(x)).^2 ) %SXX=17754
SYY = sum( (y - mean(y)).^2 ) %SYY=8.4168
SXY = sum( (x - mean(x)). * (y - mean(y)) ) %SXY=258.53
% estimators of coefficients beta1 and beta0
b1 = SXY/SXX %0.0146
b0 = mean(y) - b1 * mean(x) %-3.6436
% predictions
y_hat = b0 + b1 * x;
%residuals
res = y - y _hat;
% ANOVA Identity
SST = sum( (y - mean(y)).^2 ) %which is SYY=8.4168
SSR = sum( (y _hat - mean(y)).^2 ) %3.7647
SSE = sum( (y - y _hat).^2 ) %=sum(res.^2), 4.6521
% forming F and test of adequacy of regression
MSR = SSR/(p - 1) %3.7647
MSE = SSE/(n - p) %estimator of variance, 0.3579
s = sqrt(MSE) %0.5982
F = MSR/MSE %10.5201
pvalue = 1-fcdf(F, p-1, n-p)
%testing H _0: regression has beta1=0,
%that is no need for linear fit, p-val = 0.0064
% Other measures of goodness of fit
R2 = SSR/SST %0.4473
R2adj = 1 - (n-1)/(n-p) * SSE/SST %0.4048
% Standard deviations of coefficient estimators
sb1 = s/sqrt(SXX) %0.0045
sb0 = s * sqrt(1/n + (mean(x))^2/SXX ) %1.8517
% are the coefficients equal to 0?
t1 = b1/sb1 %3.2435
pb1 = 2 * (1-tcdf(abs(t1),n-p) ) %0.0064
t0 = b0/sb0 %-1.9677
pb0 = 2 * (1-tcdf(abs(t0),n-p) ) %0.0708
% predicting y for the new observation x, CI and PI
newx = 410; %wei = 410
y_newx = b0 + b1 * newx % 2.3268
sym = s * sqrt(1/n + (mean(x) - newx)^2/SXX )

%st.dev. for mean response, sym = 0.1545
syp = s * sqrt(1 + 1/n + (mean(x) - newx)^2/SXX )

%st.dev. for the prediction syp = 0.6178
alpha = 0.05;
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%mean response interval
lbym = y _newx - tinv(1-alpha/2, n-p) * sym;
rbym = y _newx + tinv(1-alpha/2, n-p) * sym;
% prediction interval
lbyp = y _newx - tinv(1-alpha/2, n-p) * syp;
rbyp = y _newx + tinv(1-alpha/2, n-p) * syp;
%print the intervals
[lbym rbym] % 1.9929 2.6606
[lbyp rbyp] % 0.9920 3.6615

16.8 Rinderpest virus in Rabbits.

TBA

16.9 Hemodilution.

TBA

16.10 Anscombe's Data Sets.

TBA

16.11 Potato Leafhopper.

TBA

16.12 Crossvalidating Bayesian Regression.

model{
for( i in 1 : m ) {
mu[i] <- beta0 + beta1 * x1[i] + beta2 * x2[i]
y[i] ~ dnorm(mu[i],tau)
}

for( i in m+1 : n) {
ypred[i] <- beta0 + beta1 * x1[i] + beta2 * x2[i]
error[i] <- ypred[i] - y[i]
se[i] <- error[i] * error[i]
}
mse <- mean(se[m+1:n])

beta0 ~ dnorm( 0.0,1.0E-5)
beta1 ~ dnorm( 0.0,1.0E-5)
beta2 ~ dnorm( 0.0,1.0E-5)
tau ~ dgamma(0.001,0.001)
sigma <- 1/sqrt(tau)
}

DATA



16.1 Additional Problems 119

list(n=40, m=20,
x1=c(0.17, 0.39, 0.83, 0.80, 0.06, 0.39, 0.52, 0.41,

0.65, 0.62, 0.29, 0.43, 0.01, 0.98, 0.16, 0.10,
0.37, 0.19, 0.48, 0.33, 0.95, 0.92, 0.05, 0.73,
0.26, 0.42, 0.54, 0.94, 0.41, 0.98, 0.30, 0.70,
0.66, 0.53, 0.69, 0.66, 0.17, 0.12, 0.99, 0.17),

x2=c(1, 6, 9, 7, 2, 4, 5, 10, 2, 9, 7, 4, 2, 5,
5, 2, 6, 3, 4, 6, 3, 3, 7, 3, 9, 10, 8, 4,
6, 2, 10, 9, 9, 3, 6, 1, 5, 4, 2, 2),

y=c(3.038, 1.984, 3.241, 2.526, 1.532, 2.585, 1.855, -1.09 2,
5.807, 1.162, 0.563, 2.660, 0.584, 4.956, 0.857, 0.877,
1.859, 2.143, 2.280, 0.825, 5.259, 4.260, -0.394, 4.512,

-0.623, -0.275, 1.304, 4.853, 0.748, 6.598, -2.140, 0.861,
2.676, 3.779, 2.214, 5.466, -0.333, -0.311, 6.785, 2.789)

)

INITS
list( beta0=0, beta1=0, beta2=0, tau=1)

16.13 Taste of Cheese.

Use the code tastecheese.m

16.14 Slowing the Progression of Arthritis.

TBA

16.15 Insulin on Opossum Liver.

TBA

16.16 Slope in EIV regression. Show that the EIV regression slope in ( ??)
tends to Sxy/Sxx when ´ ! 0.

TBA

16.17 Interparticular Spacing and Wavelength in Nanoprism s 2.

TBA

16.1 Additional Problems

16.a1 Failures of Silver-zinc Batteries. Silver-zinc batteries feature a
water-based chemistry and contain no lithium or �ammable li quids. Devel-
oped originally for satellite applications, these batteri es are beginning to re-
place lithium-ion batteries in mobile phones, laptop compu ters, and battery-
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powered medical devices. For example, some modern implanta ble hearing aids
are powered by silver-zinc rechargeable batteries.

The data provided in silverzinc.dat|mat are collected in the 1980's
when silver-zink battery technologies have been analyzed b y NASA (Sidek
et al, 1980; also Johnson and Wichern, 2007). The response va riable is ctf -
the number of cycles-to-failure, while the covariates are chr - charge rate (in
Amp), dchr - discharge rate (in Amp), ddch - depth of discharge (in % of rated
Amp/hours), temp - temperature (in degC), and ecv - end of charge voltage (in
Volts).

(a) Find a 95% CI for the coef�cient of correlation between temp and
log(ctf) .

(b) Propose a linear regression model to predict logarithm o f cycles-to-
failure, log(ctf) , that uses a subset of predictors from chr, dchr.ˆ2,
ddch, sqrt(temp) , and ecv . Defend the choice of your model (one para-
graph).

² Sidek, S., Leibecki, H., and Bozek, J. (1980). Failure of sil ver-zinc cells
with competing failure modes: preliminary data analysis. NASA Technical
Memorandum 81556 , Lewis Research Center, Cleveland OH.

² Johnson, R. and Wichern, D. (2007). Applied Multivariate Statistical Anal-
ysis, 6th edition. Prentice Hall, Upper Saddle River, NJ.

16.a2 ANOVA Table from r and SST. Fully recover ANOVA table in
regression with n Æ26 pairs of observations ( x, y), for which r Æ0.88 and
SST Æ134.75.

Source SS DF MS F p -value

Regression r 2SST 1 r 2SST (n¡ 2)r 2

1¡ r 2 1-fcdf(F, 1, n-2)

Error (1 ¡ r 2)SST n ¡ 2 (1¡ r 2)SST
n¡ 2

Total SST n ¡ 1

16.a3 Release kinetics of BMP-2 from alginate hydrogels. (Courtesy
of Lauren Priddy) Polymeric biomaterials such as alginate a re promising cell
and protein delivery vehicles for bone tissue engineering d ue to their biocom-
patibility, moldability, and tunable degradation rates. A lginate hydrogels have
been used to deliver bone morphogenetic protein-2 (BMP-2) i n critically-sized
rat bone defect models. Partial oxidation, whereby a small p ercentage of the
uronate residues are oxidized, allows the polymer chains to be more suscepti-
ble to hydrolysis and increases the degradation rate in vitr o. The goal of this
experiment was to determine the release kinetics of BMP-2 fr om oxidized al-
ginate hydrogels.

In this study, oxidized alginate hydrogels were loaded with BMP-2 and
incubated in media, Figure 16.1(a). The media were collecte d and replaced
with fresh media at the following time points: 4, 16, 24, 40, 4 8, 72, and 120
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Fig. 16.1 (a) Injection of alginate hydrogel into nano�ber mesh prior to incubation; (b) Scat-
terplot of cumulative BMP-2 over time.

hours. The amount of BMP-2 (nanograms) at each time point was quanti-
�ed from the media collections using an enzyme-linked immun osorbent assay
(ELISA). The cumulative amount of BMP-2 released at the pres elected times
is shown in the table below. The data in the table below are als o given in
bmp2.mat|dat|xlsx .

Time (hours) BMP-2
4 11.07 11.74 10.44 10.78 10.62 10.67 10.47

16 13.28 14.35 13.32 14.22 13.73 14.22 13.03
24 13.89 14.68 15.26 15.23 15.50 15.20 15.34
40 16.00 15.31 14.95 15.15 14.49 16.25 15.89
48 15.26 15.91 16.07 16.32 16.91 15.36 14.92
72 15.46 16.77 17.87 16.45 16.36 16.20 16.13

120 16.87 16.89 16.87 16.82 18.27 18.05

From the scatterplot in Figure 16.1(b) it is evident that a li near �t, with
time as a covariate and BMP2as a response, is inadequate.

(a) Transform time to lt=log(time) , and inspect the scatterplot of BMP2
against lt . Find the 95% con�dence interval for the correlation betwee n lt
and BMP2, and comment on the adequacy of linear regression now.

(b) Find the linear relationship

BMP2 = b0 + b1 * lt ,

where b0 and b1 are estimators of the population intercept and slope, ¯ 0 and
¯ 1. The error ² in the population equation BMP2Æ¯ 0 Å ¯ 1lt Å ² , is assumed
normal with mean 0 and variance ¾2. What is the estimator of this variance?

(c) If you are to predict the BMP2at time = 100 , what are the 95% CIs for
(1) a response in a single future experiment, and for (2) an av erage response.
Comment why the intervals are not identical? [Find the inter vals. Explain
their difference in one or two sentences].
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% y=[...
% 11.07 11.74 10.44 10.78 10.62 10.67 10.47 ...
% 13.28 14.35 13.32 14.22 13.73 14.22 13.03 ...
% 13.89 14.68 15.26 15.23 15.50 15.20 15.34 ...
% 16.00 15.31 14.95 15.15 14.49 16.25 15.89 ...
% 15.26 15.91 16.07 16.32 16.91 15.36 14.92 ...
% 15.46 16.77 17.87 16.45 16.36 16.20 16.13 ...
% 16.87 16.89 16.87 16.82 18.27 18.05 ];
%
% x=[ 4 4 4 4 4 4 4 16 16 16 16 16 16 16 ...
% 24 24 24 24 24 24 24 40 40 40 40 40 40 40 ...
% 48 48 48 48 48 48 48 72 72 72 72 72 72 72 ...
% 120 120 120 120 120 120];
%
close all
load 'bmp2.mat'
x = bmp2(:,1);
y=bmp2(:,2);
%(a)
lt = log(x);
[r pval lb ub] = corrcoef(lt, y)

% r =1.0000 0.9528
% 0.9528 1.0000
%
% lb = 1.0000 0.9169
% 0.9169 1.0000
%
% ub = 1.0000 0.9734
% 0.9734 1.0000
%
%(a) by hand
r=corr(lt, y) % r =0.9528
%fisherz = @(x) 1/2 * log( (1+x)/(1-x) );
w = 1/2 * log( (1+r)/(1-r)) % w =1.8616
n=length(y) % n =48
LB = w - norminv(1-0.05/2) / sqrt(n-3) % LB = 1.5694
UB = w + norminv(1-0.05/2) / sqrt(n-3) % UB = 2.1537
%invfisherz = @(x) (exp(2 * x) - 1)/(exp(2 * x) + 1)
L=(exp(2 * LB)- 1)/(exp(2 * LB)+ 1) % L = 0.9169
U=(exp(2 * UB)- 1)/(exp(2 * UB)+ 1) % U = 0.9734

%(b)

[b] = regress(y,[ones(size(y)) lt])

stats= regstats(y, [lt]); % 0.9079 453.3008 0.0000 0.4021

newx = log(100);
n = length(lt);
% Sums of Squares
SXX = sum( (lt - mean(lt)).^2 ) %SXX=50.5530
y_newx = b(1) + b(2) * newx %17.1912
sym = stats.mse * sqrt(1/n + (mean(lt) - newx)^2/SXX )

%st.dev. for mean response, sym = 0.0898
syp = stats.mse * sqrt(1 + 1/n + (mean(lt) - newx)^2/SXX )

%st.dev. for the prediction syp = 0.4120
alpha = 0.05;
%mean response interval
lbym = y _newx - tinv(1-alpha/2, n-2) * sym;
rbym = y _newx + tinv(1-alpha/2, n-2) * sym;
[lbym rbym] % 17.0105 17.3719

% prediction interval
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lbyp = y _newx - tinv(1-alpha/2, n-2) * syp;
rbyp = y _newx + tinv(1-alpha/2, n-2) * syp;
[lbyp rbyp] % 16.3619 18.0205





Chapter 17

Regression for Binary and Count Data

17.1 Blood Presure and Heart Disease.

TBA

17.2 Blood Presure and Heart Disease in WinBUGS.
Hint: Beetles Example may help in setting up BUGS code.

TBA

17.3 Sex of Turtles and Incubation Temperature.

TBA

17.4 Health Promotion.

TBA

17.5 PONV.

TBA

17.6 Mannose-6-phosphate Isomerase.

TBA

17.7 Arthritis Treatment Data.

%arthritis2.m

load 'arthritis2.dat'
caseid = arthritis2(:,1);
treatment = arthritis2(:,2);
gender = arthritis2(:,3);
age = arthritis2(:,4);
improve = arthritis2(:,5);
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improve01 = arthritis2(:,5)>0 ;
X = [treatment gender age];
[betas, deviance, stats]=glmfit(X,improve01,'binomial ','link','comploglog')

figure(1)
score = betas(1) + betas(2) * treatment + betas(3) * gender + betas(4) * age;
plot(score, improve01,'o',...
'MarkerSize',msize, 'MarkerEdgeColor','k', 'MarkerFac eColor','g')

xx = -2.7:0.01:1.4;
imp = 1 - exp(- exp(xx) );
hold on
plot(xx, imp,'r-','LineWidth',lw)
xlabel('Score')
ylabel('Probability of Improving')

[betas2, deviance2, stats2]=glmfit(X,improve01,'binom ial','link','logit')
[betas3, deviance3, stats3]=glmfit(X,improve01,'binom ial','link','probit')
score2 = betas2(1) + betas2(2) * treatment + betas2(3) * gender + betas2(4) * age;
score3 = betas3(1) + betas3(2) * treatment + betas3(3) * gender + betas3(4) * age;

imp = 1 - exp(- exp(score) );
imp2 = exp(score2)./(1 + exp(score2));
imp3 = normcdf(score3);
plot(score, imp,'r * ')
hold on
plot(score2, imp2,'ko')
plot(score3, imp3,'bd')
xlabel('scores')
ylabel('fits')
legend('cloglog','logit','probit',2)

deviance %92.0751
deviance2 %92.0628
deviance3 %91.9286

17.8 Third-degree Burns.

TBA

17.9 Diabetes Data.
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TBA

17.10 Remission Ratios over Time.

TBA

17.11 Death of Sprayed Flour Beetles.

TBA

17.12 Mortality in Swiss White Mice.

TBA

17.13 Kyphosis Data.

TBA

17.14 Prostate Cancer.

TBA

17.15 Pediculosis Capitis.

TBA

17.16 Finney Data.

TBA

17.17 Shocks.

TBA

17.18 Ants.

TBA

17.19 Sharp Dissections and Postoperative Adhesions Revis ited.

TBA

17.20 Airfreight breakage.

TBA

17.21 Body Fat Affecting Accuracy of Heart Rate Monitors .

TBA

17.22 Miller Lumber Company Customer Survey.

TBA

17.23 SO2,NO2, and Hospital Admissions .
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TBA

17.24 Kidney Stones.

TBA

17.1 Additional Problems

17.a1 Bumpus' Sparrows Data. After an unusually severe storm in Febru-
ary of 1898, a number of house sparrows, Passer domesticus, were brought
to the Anatomical Laboratory of Brown University, Providen ce, Rhode Island.
Seventy-two of these birds revived; sixty-four perished. T his event is described
by Hermon Carey Bumpus, the �rst PhD graduate of Clark Univer sity, whose
paper (Bumpus, 1898) has served as an example of natural sele ction in action.
The data set provided by Bumpus included several anatomic me asurements
on 136 birds (as data structure bumpus.mat ) and had been analyzed since by
many diverse researches.

sex 1 = male; 2 = female
surv 1 if survived, 0 if perished
lbt Length (mm) from tip of the beak to the tip of the tail
ae Alar extent (mm) from tip to tip of the extended wings
wei Weight (g)
lbh Length of beak and head (mm), from tip of the beak to the occipu t
hum Length of Humerus [arm/wing bone] (in)
fem Length of Femur [thigh bone] (in)
tib Length of Tibiotarsus [leg bone linked to femur] (in)
wos Width of Skull (in), from the postorbital bone of one side to t he postorbital

bone of the other
kos Length of Keel of Sternum [an extension of breastbone] (in)

By using logistic regression, model the probability of surv ival for male
sparrows ( sex = 1 ) using the covariates lbt, ae, wei, lbh, hum, fem,
tib, wos, and kos .

There is an agreement that lighter and shorter birds have a hi gher chance
of survival. How is this re�ected in your model?

² Bumpus, H. C. (1898) The elimination of the un�t as illustrat ed by the
introduced sparrow, Passer domesticus. Biological Lectures at Woods Hole Ma-
rine Biological Laboratory, 11th Lecture, 209–225.

TBA
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3. Wisconsin Diagnostic Breast Cancer (WDBC). Wolberg, Street, and
Mangasarian, from the University of Wisconsin, 1 were interested in machine
learning in diagnosing breast cancer from �ne-needle aspir ates.

The data set wdbc.mat constitutes a matrix wdbc with 569 rows (subjects)
of which 357 correspond to controls and 212 to cancer. The mat rix has 31
columns: column 1 is diagnosis (0 = control, 1 = cancer), whil e the columns
2-31 contain 30 features. The features are computed from a di gitized image of
a �ne needle aspirate (FNA) of a breast mass, see Figure 17.1. They describe
characteristics of the cell nuclei present in the image.

Variable Mean S.Error Extreme
Radius (average distance from the center) Col 2 Col 12 Col 22
Texture (standard deviation of gray-scale values) Col 3 Col 13 Col 23
Perimeter Col 4 Col 14 Col 24
Area Col 5 Col 15 Col 25
Smoothness (local variation in radius lengths) Col 6 Col 16 C ol 26
Compactness (perimeter 2 / area - 1.0) Col 7 Col 17 Col 27
Concavity (severity of concave portions of the contour) Col 8 Col 18 Col 28
Concave points (number of concave portions of the contour) C ol 9 Col 19 Col 29
Symmetry Col 10 Col 20 Col 30
Fractal dimension (“coastline approximation” - 1) Col 11 Co l 21 Col 31

The mean, standard error, and extreme (largest) of nuclei me asures were
computed for each image, resulting in 30 features. For insta nce, column 2 is
Mean Radius, column 12 is Radius Standard Error, column 22 is Extreme
Radius.

Fig. 17.1 FNA: A digitized image of a �ne needle aspirate of a breast mas s.

1 Wolberg, W. H., Street, W. N., and O.L. Mangasarian, O. L., (1 994). Machine learning
techniques to diagnose breast cancer from �ne-needle aspir ates. Cancer Letters, 77 (1994)
163-171.

Wolberg, W. H., Street, W. N., and O.L. Mangasarian, O. L., (1 995). Image analysis and
machine learning applied to breast cancer diagnosis and pro gnosis. Analytical and Quanti-
tative Cytology and Histology , 17, 2, 77–87.
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(a) Propose a logistic regression model in which the inciden ce of malignancy
is regressed on Mean Texture (3rd column), Extreme Area (25t h column), and
Extreme Smoothness (26th column). These three covariates a re recommended
by the authors as good separating variables.

(b) Find the probability of malignancy suggested by the mode l in (a) for a
new case where Mean Texture, Extreme Area, and Extreme Smoot hness, are
21.423, 654.787, and 0.118, respectively.

%WDBC

load 'wdbc.mat'
%

Y = wdbc(:,1);
X = wdbc(:,[3 25 26]); %Design matrix n x (p-1) without

% vector of 1's (intercept)

Xdes =[ones(size(Y)) X]; %with the intercept: n x p

[n p] = size(Xdes);
alpha = 0.05; %alpha for CIs

[b, dev, stats]=glmfit(X,Y, 'binomial','link','logit') ;

lin = Xdes * b; %linear predictor, n x 1 vector

newperson= [1 21.423 654.787 0.118];
newlin = newperson * b % -0.2020

prob = exp(newlin)/( 1 + exp(newlin) ) %0.4497

figure(1)
plot(lin, Y,'o','MarkerSize',msize,...

'MarkerEdgeColor','k','MarkerFaceColor','g')
xx = -2:0.01:1;
mp = exp(xx)./(1 + exp(xx));
hold on
plot(xx, mp,'r-','LineWidth',lw)
plot( [newlin newlin],[0 prob],'r:')
plot([-2 newlin],[prob prob],'r:')
axis([-2 1 0 1])
xlabel('Linear Predictor','Interpreter','LaTeX')
ylabel('Probability of Cancer','Interpreter','LaTeX')
legend('Observations','Logistic Fit',2)



Chapter 18

Inference for Censored Data and Survival
Analysis

18.1 Simulation of Censoring.

%survival1.m
y = exprnd(10,50,1); % Random failure times exponential(10 )
d = exprnd(20,50,1); % Drop-out times exponential(20)
t = min(y,d); % Observe the minimum of these times
censored = (y>d); % Observe whether the subject failed

% Calculate and plot empirical cdf and confidence bounds
[f,x,flo,fup] = ecdf(t,'censoring',censored);
stairs(x,f,'LineWidth',2)
hold on
stairs(x,flo,'r:','LineWidth',2)
stairs(x,fup,'r:','LineWidth',2)
% Superimpose a plot of the known population cdf
xx = 0:.1:max(t);
yy = 1-exp(-xx/10);
plot(xx,yy,'g-','LineWidth',2)
legend('Empirical','LCB','UCB','Population',...

'Location','SE')
hold off

18.2 Immunoperoxidase.

The 95% intervals are [0 .0021,0.0063] for the �rst approximation, and [0 .0026,0.0069]
for the second.

The following is added to the MATLAB script in Example ??:

z0975 = norminv(0.975);
[hatlam1 - z0975 * hatlam1/sqrt(k1), hatlam1 + z0975 * hatlam1/sqrt(k1)]

%0.0021 0.0063

exp([log(lambdahat1) - z0975 * sqrt(1/k1) ...
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log(lambdahat1) + z0975 * sqrt(1/k1)])
%0.0026 0.0069

Note that the con�dence interval found by MATLAB on the scale parameter was [153 .6769,415.7289].
By taking the reciprocals, an alternative con�dence interv al is [0 .0024,0.0065].

18.3 Massachusetts Data.

TBA

18.4 Expected Life-time.

T is non-negative. Start with ET Æ
R1

0 t f (t)dt and take u Æt and dv Æf (t)dt . But

dv Æf (t)dt Æd(F (t)) Æd(1 ¡ S(t)) Æd(¡ S(t)) ! v Æ ¡S(t).

Now, ET Æuvk1
0 ¡

R1
0 (¡ S(t))dt Æ

R1
0 S(t)dt .

18.5 Censored Rayleigh.

TBA

18.6 MLE for Equally Censored Data.

TBA

18.7 Malignant Melanoma.

TBA

18.8 Rayleigh Survival Times.

(a) The cdf for Rayleigh distribution is F (t) Æ1 ¡ e¡ ¸ t2
and S(t) Æe¡ ¸ t2

so that

h(t) Æ
f (x)

S(t)
Æ2¸ t .

(b) The mean survival time is ¹ Æ1
2

q
¼
¸ . (c) As Example ??. (d) The hazard is linear function

of the parameter, thus the parameter is substituted by its Ba yes estimator. For the survival
function one can use the fact that the moment generating func tion for T » Ga(®, ¯ ) is

Eet T Æ
¡
1 ¡ t /¯

¢¡ ® .

18.9 Western White Clematis.

TBA



Chapter 19

BUGS

19.1 A Coin and a Die.

#coin.bug:

model coin;
{
flip12 ~ dcat(p.coin[])
coin <- flip12 - 1
}
#coin.dat:

list(p.coin=c(0.5, 0.5))
# just generate initials

19.2 Paradox DeMere in WinBUGS.

The solution to the “paradox” deMere is simple. By taking int o account all
possible permutations of the above triples the sum 11 has 27 f avorable permu-
tations while the sum 12 has 25 favorable permutation.

But what if 300 fair dice are rolled and we are interested if th e sum 1111 is
advantageous to the sum 1112? Exact solution is unappealing , but the proba-
bilities can be well approximated by WinBUGS model demere1.

model demere1;
{
for (i in 1:300) {
dice[i] ~ dcat(p.dice[]);
}
is1111 <- equals(sum(dice[]),1111)
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is1112 <- equals(sum(dice[]),1112)
}

DATA

list(p.dice=c(0.1666666, 0.1666666,
0.1666667, 0.1666667, 0.1666667, 0.1666667) )

The initial values are generated. After �ve million rolls, W inBUGS outputs
is1111 = 0.0016 and is1112 = 0.0015 , so the sum of 1111 is advantageous

to the sum of 1112.

19.3 Simulating Probability of an Interval.

(a) 1/e - 1/eˆ1.6 ans =0.165982923176787

(b) Recall that MATLAB parametrizes with scale parameter 1/ ¸ Æ10, so
expcdf(16, 10) - expcdf(10,10) ans = 0.165982923176787

(c)

model{
theta ~ dexp(0.1)
P <- step(theta-10) * step(16-theta)
}

There is no data to load in, and after checking the model in the Model's
Speci�cation Tool one proceeds directly to compiling. Also , the WinBUGS will
generate a starting point for the MCMC iteration. The result after total of
10,000,000 iterations is

mean sd MCerror val2.5pc median val97.5pc start sample
P 0.1659 0.372 1.169E-4 0.0 0.0 1.0 1001 9999000

19.4 WinBUGS as a Calculator.
The solution is given by the following code

model{
F(x) <- sin(x)
int <- integral(F(x), 0, pi, 1.0E-6)
pi<- 3.141592659

y0 <- solution(F(y), 1,2, 1.0E-6)
F(y) <- pow(y,5) - 2 * y
zero <- pow(y0, 5)-2 * y0

randint <- integral(F(z), 0, randbound, 1.0E-6)
F(z) <- pow(z,3) * (1-pow(z,4))
randbound ~ dbeta(2,2)
}
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NO DATA

INITS
list(x =1, y=0, z=NA,randbound=0.5)

After model checking, one should go directly to compiling (n o data to load
in) and to initializing the model. There is NO need to update t he model or
to go to Inference tool, set variables for monitoring and sam ple. One simply
goes to Info menu and checks Node Info. In the Node Info Tool on e speci�es
int for the approximation of integral, y0 for the solution of equation, zero for
checking that y0 satis�es the equation (approximately), and randint for the
value of random interval.


